首页> 外文期刊>Mathematical geosciences >Optimization of a SAG Mill Energy System: Integrating Rock Hardness, Solar Irradiation, Climate Change, and Demand-Side Management
【24h】

Optimization of a SAG Mill Energy System: Integrating Rock Hardness, Solar Irradiation, Climate Change, and Demand-Side Management

机译:SAG轧机能量系统的优化:整合岩石硬度,太阳照射,气候变化和需求方管理

获取原文
获取原文并翻译 | 示例
           

摘要

Integration of renewable energy into mining and processing operations is becoming necessary as part of a strategy towards sustainability in the minerals industry.A solar photovoltaic plant along with a battery energy storage system (PV-BESS) can provide a long-term solution to cope with increasing energy costs, thus reducing the tension with other societal competing needs for a key resource such as clean energy. However, sizing these systems is challenging, in face of uncertain ore grindability and solar power availability. In this paper, we present an application of an integrated model to size the PV-BESS, where the variability of ore grindability is modeled using geostatistical tools, solar irradiance variability is captured using a Markov chain simulation model, and the entire system is optimized through linear stochastic optimization, considering a fixed mine schedule for the feed of a semiautogenous grinding (SAG) mill. The main goals are to minimize the costs associated with operating the SAG mill in the presence of a PV-BESS system, understand how the sizing and costs change under the influence of stochastic drivers, and reveal the potential for demand-side management in mines. The size and costs of the necessary infrastructure are determined for a model of estimated grindability and an ensemble of 50 simulated models of grindability, and compared against the sizing and cost of the ground truth. The effect of climate change on solar energy availability is accounted for by forecasting the ratio of excellent, good, and moderate days over bad days in terms of irradiance out to the year 2030. Finally, the effects of stockpiles and feed control according to the processing plant needs, namely a demand-side management approach, are evaluated to reveal the impact on the energy requirements and the sizing of the photovoltaic and storage system. The model is optimized considering a yearly cost function, with hourly resolution for the solar irradiance and hardness models. The results show that integrating solar power into the operation of a SAG mill has potential to reduce the total energy cost by 27%. Robustness against climate change can be achievedwith an increase in total cost of 1%. Finally, use of stockpiles to manage the ore supply to the mill and minimize the energy cost to process it results in a cost reduction of around 2%, which should offset the rehandling cost of managing the stockpiles.
机译:作为矿业行业可持续发展战略的一部分,将可再生能源与采矿和加工业务的整合成为必要的。太阳能光伏设备以及电池储能系统(PV-BESS)可以提供长期解决方案来应对提高能源成本,从而降低了与其他社会竞争需求的紧张率,以获得清洁能量的关键资源。然而,面对不确定的矿石磨削性和太阳能电力可用性,施加这些系统的尺寸是具有挑战性的。在本文中,我们展示了一个集成模型的应用于PV-BESS的大小,其中使用地统计工具模拟了矿石磨削性的可变性,使用Markov链仿真模型捕获太阳辐照度可变性,并且整个系统通过线性随机优化,考虑到半源磨削(SAG)轧机饲料的固定矿井时间表。主要目标是在PV-BESS系统存在下最大限度地减少与操作SAG磨机相关的成本,了解如何在随机驾驶员的影响下进行规模和成本,并揭示矿山需求方管理的潜力。确定必要基础设施的尺寸和成本是针对估计研磨性的模型和50种模拟模型的磨削性模型的模型,并与地面真理的尺寸和成本进行比较。气候变化对太阳能可用性的影响是通过预测在2030年到2030年的辐照上糟糕的日子中糟糕的日子比例的比例来计算。最后,根据加工的储存和饲料控制的影响植物需求,即需求侧管理方法,评估揭示对能量要求的影响和光伏和储存系统的尺寸。该模型经过考虑年度成本函数优化,为太阳辐照度和硬度模型为每小时分辨率。结果表明,将太阳能集成到凹槽厂的运行中具有可能降低总能源成本的27%。气候变化的稳健性可以实现1%的总成本增加。最后,使用库存来管理矿厂的矿石供应,并最大限度地降低其处理的能源成本导致成本降低约2%,这应该抵消管理库存的重生成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号