...
首页> 外文期刊>ACS nano >Tailoring ZnSe-CdSe colloidal quantum dots via Cation Exchange: From core/shell to alloy nanocrystals
【24h】

Tailoring ZnSe-CdSe colloidal quantum dots via Cation Exchange: From core/shell to alloy nanocrystals

机译:通过阳离子交换定制ZnSe-CdSe胶体量子点:从核/壳到合金纳米晶体

获取原文
获取原文并翻译 | 示例

摘要

We report a study of Zn~(2+) by Cd~(2+) cation exchange (CE) in colloidal ZnSe nanocrystals (NCs). Our results reveal that CE in ZnSe NCs is a thermally activated isotropic process. The CE efficiency (i.e., fraction of Cd~(2+) ions originally in solution, Cd_(sol), that is incorporated in the ZnSe NC) increases with temperature and depends also on the Cd_(sol)/ZnSe ratio. Interestingly, the reaction temperature can be used as a sensitive parameter to tailor both the composition and the elemental distribution profile of the product (Zn,Cd)Se NCs. At 150 C ZnSe/CdSe core/shell hetero-NCs (HNCs) are obtained, while higher temperatures (200 and 220 C) produce (Zn_(1-x)Cd_x)Se gradient alloy NCs, with increasingly smoother gradients as the temperature increases, until homogeneous alloy NCs are obtained at T ≥ 240 C. Remarkably, sequential heating (150 C followed by 220 C) leads to ZnSe/CdSe core/shell HNCs with thicker shells, rather than (Zn_(1-x)Cd_x)Se gradient alloy NCs. Thermal treatment at 250 C converts the ZnSe/CdSe core/shell HNCs into (Zn_(1-x)Cd_x)Se homogeneous alloy NCs, while preserving the NC shape. A mechanism for the cation exchange in ZnSe NCs is proposed, in which fast CE takes place at the NC surface, and is followed by relatively slower thermally activated solid-state cation diffusion, which is mediated by Frenkel defects. The findings presented here demonstrate that cation exchange in colloidal ZnSe NCs provides a very sensitive tool to tailor the nature and localization regime of the electron and hole wave functions and the optoelectronic properties of colloidal ZnSe-CdSe NCs.
机译:我们报告了胶体ZnSe纳米晶体(NCs)中Cd〜(2+)阳离子交换(CE)对Zn〜(2+)的研究。我们的结果表明,ZnSe NCs中的CE是一种热活化的各向同性过程。 CE效率(即最初在溶液中掺入ZnSe NC中的Cd〜(2+)离子的比例Cd_(sol))随温度增加,并且还取决于Cd_(sol)/ ZnSe的比率。有趣的是,反应温度可以用作敏感参数,以调整产物(Zn,Cd)Se NCs的组成和元素分布曲线。在150 C时,获得ZnSe / CdSe核/壳杂质NC(HNC),而更高的温度(200和220 C)则生成(Zn_(1-x)Cd_x)Se梯度合金NC,随着温度的升高,梯度逐渐趋于平滑,直到在T≥240 C时获得均质合金NCs。值得注意的是,依次加热(150 C再加上220 C)会导致ZnSe / CdSe核/壳HNC的壳更厚,而不是(Zn_(1-x)Cd_x)Se梯度合金NCs。 250 C的热处理将ZnSe / CdSe核/壳HNC转变为(Zn_(1-x)Cd_x)Se均质合金NC,同时保持NC形状。提出了一种在ZnSe NCs中进行阳离子交换的机制,其中快速的CE在NC表面发生,随后是相对较慢的热活化固态阳离子扩散,这是由Frenkel缺陷介导的。此处提出的发现表明,胶体ZnSe NCs中的阳离子交换提供了一种非常灵敏的工具,可用于调整胶体ZnSe-CdSe NCs的电子和空穴波功能的性质和定位机制以及光电性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号