首页> 外文期刊>Fractals: An interdisciplinary journal on the complex geometry of nature >FRACTAL ANALYSIS OF AMPHIBOLE AGGREGATION GROWTH FROM A BASALTIC MELT AND RESIDUAL MELT AT HIGH PRESSURE AND HIGH TEMPERATURE
【24h】

FRACTAL ANALYSIS OF AMPHIBOLE AGGREGATION GROWTH FROM A BASALTIC MELT AND RESIDUAL MELT AT HIGH PRESSURE AND HIGH TEMPERATURE

机译:高压和高温玄武岩熔体和残余熔体的锥形聚集生长的分形分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The aim of this work is to quantitatively explore the texture evolution of amphibole aggregation and residual melt with pressure and temperature. The amphibole aggregation growth from a basaltic melt and the residual melt at high pressure (0.6-2.6 GPa) and high temperature (860-970 degrees C) exhibit statistical self-similarity which made us consider studying such characteristic by fractal analysis. The bi-phase box counting method was applied for fractal analysis of each product to identify the fractal phase and the fractal dimension was estimated. In the experimental products, the residual melt is identified as the fractal and amphibole as the Euclidean except for one experiment. The results show that the residual melt can be quantified by the fractal dimension (D-B) within the range of 1.782-1.848. The temperature has a significant effect on the morphology of amphibole arid the fractal dimension of the residual melt. The higher the crystallization temperature is, the more regular the amphibole grains are. At lower temperature (from 860 degrees C to 915 degrees C), the fractal dimension of the residual melt decreased with the increasing crystallization temperature, but at higher temperature (970 degrees C), the fractal phase changed to amphibole and the fractal dimension of amphibole is 1.816. The pressure may be the dominant factor that controls the morphology of the mineral aggregation and the residual melt. The fractal dimension of melt decreased linearly with the increasing pressure and if the linear relationship between the fractal dimension and pressure can be further verified in the future, it can be used as a potential geological barometer.
机译:这项工作的目的是定量探讨压力和温度的锥形聚集和残留熔体的质地演变。从高压(0.6-2.6GPa)和高温(860-970℃)的玄武岩熔体和残留熔体的锥形聚集生长表现出统计自相似性,使我们考虑通过分形分析研究这些特征。施用双相盒计数方法用于每种产物的分形分析以鉴定分形相,估计分形尺寸。在实验产品中,除了一个实验外,残留熔体被鉴定为作为Euclidean的分形和锥体。结果表明,残留熔体可以通过分形尺寸(D-B)定量在1.782-1.848的范围内。该温度对倒置的形态产生显着影响。残留熔体的分形尺寸干燥。结晶温度越高,常规常规颗粒越多。在较低的温度(从860℃至915℃)下,残留熔体的分形尺寸随着结晶温度的增加而降低,但在较高温度(970℃)下,分形相变为倒角和锥形倍数的分形尺寸是1.816。压力可能是控制矿物聚集和残留熔体的形态的显性因素。熔体的分形尺寸随着压力的增加而线性下降,并且如果在将来可以进一步验证分形尺寸和压力之间的线性关系,它可以用作潜在的地质晴雨表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号