...
首页> 外文期刊>Marine Geology >Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts
【24h】

Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts

机译:电子显微镜研究了西太平洋麦哲伦海山锰锰群地壳的形成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Variations in mineralogy and chemical composition, layer structures, redox states of Fe and Mn, and microbial diversity are closely linked to the biogeochemical process when a ferromanganese crust layer forms. A sample collected from the Magellan Seamount (OSM11), in the western Pacific, was characterized in five well-defined layers, top to bottom (L1-5). Fe-vernadite occurs in all layers, compared to detritus quartz, feldspar, goethite, and hematite in Li and L3, and carbonate fluorapatite (CFA) in L4-5. The relatively high concentrations of Ca and P in L4-5, and Fe, Co, and Si in L1 and L3 correspond to the mineralogical variations in the crust layer. Disappearance of elongated voids along the convex growth line is likely due to void filling precipitation of CFA in L4-5, resulting in the void reduction (31.6 to 6.0%). The oxidation states of Fe in Fe-vernadite measured by electron energy loss spectroscopy (EELS) ranges from 36 to 63% of Fe3+/Fe-tot, and a layer where CFA appeared (L4) contains a more reductive form of Fe (Fe3+/Fe-tot = 36-48%). Presence of Fe- (coxC) and Mn-oxidizing gene (cumA), particularly displaying a strong PCR band of coxC in L2-3, indicates a dominant oxidizing condition. Direct evidence of microbial activity in Fe - and Mn-oxide precipitation with various redox conditions was identified in the focused ion beam-sectioned microfossil. Particularly, a spectrum image displaying a more reducing form of Fe around the voids previously occupied by microorganisms, strongly supports that microorganisms play an important role in the redox reaction in the growth of a crust.
机译:矿物学和化学成分,层结构,Fe和Mn的氧化还原态的变化和微生物多样性与生物地球化学过程密切相关。从西太平洋的Magellan Seamount(OSM11)收集的样品在五个定义的层面,顶到底部(L1-5)。与LI和L3中的碎屑石英,长石,甲酸酯和赤铁矿相比,在所有层中发生Fe-VernaDite。 L1和L3中L4-5和Fe,Co和Si中的相对高浓度的Ca和P对应于地壳层中的矿物学变化。沿凸生长型的细长空隙消失可能是由于L4-5中CFA的空隙填充沉淀,导致空隙还原(31.6至6.0%)。通过电子能量损失光谱(EEL)测量的Fe-vernadite的氧化状态为Fe3 + / Fe-tot的36-63%,以及CFA出现的层(L4)含有更新的Fe(Fe3 + / Fe-tot = 36-48%)。 Fe-(CoxC)和Mn-氧化基因(CUMA)的存在,特别是在L2-3中显示COXC的强PCR带,表明了优势氧化条件。在聚焦离子束段微氧化中鉴定了具有各种氧化还原条件的Fe - 和Mn-氧化物沉淀的微生物活性的直接证据。特别地,在先前被微生物占据的空隙周围显示的谱图像围绕过的空隙,强烈支持微生物在脱氧反应中在地壳生长中发挥着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号