首页> 中国专利> 采用锰基络合阴离子元素试剂配合物(Mn-LAERC)合成铁磁性锰-铋纳米颗粒及由其形成块状MnBi磁体

采用锰基络合阴离子元素试剂配合物(Mn-LAERC)合成铁磁性锰-铋纳米颗粒及由其形成块状MnBi磁体

摘要

本发明涉及采用锰基络合阴离子元素试剂配合物(Mn-LAERC)合成铁磁性锰-铋纳米颗粒及由其形成块状MnBi磁体。提供了一种用于合成铁磁性锰-铋(MnBi)纳米颗粒的方法及所合成的MnBi纳米颗粒。该方法采用了基于锰基阴离子元素试剂配合物(Mn-LAERC)的新的试剂。还提供了一种由所合成的MnBi纳米颗粒形成块状MnBi磁体的方法。该方法包括向该纳米颗粒同时施加高温和高压。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-02-18

    专利权的转移 IPC(主分类):H01F41/02 登记生效日:20200122 变更前: 变更后: 变更前: 变更后: 申请日:20160107

    专利申请权、专利权的转移

  • 2019-03-08

    授权

    授权

  • 2018-01-19

    实质审查的生效 IPC(主分类):H01F41/02 申请日:20160107

    实质审查的生效

  • 2016-07-20

    公开

    公开

说明书

技术领域

本发明总体上涉及用于合成合金化的、铁磁性金属纳米颗粒的方法和用于由该合成的纳米颗粒形成块状磁体的方法。

背景技术

铁磁性材料(具有以严格的平行度排列原子的磁偶极子的强烈倾向的材料)对于大量零售和工业设备的运行而言是不可缺少的。这类材料强烈响应所施加的磁场,且本身还可制备用来发射稳定的主体磁场。作为应用的实例,大量电子设备,例如医疗和科学诊断设备、电子数据存储介质、以及电子或电磁束转向设备依赖于铁磁性材料发挥作用。特别关注的是具有铁磁芯的芯螺线管设备,例如电动机和发电机。

按常规,铁磁性材料是主要由固有铁磁性的元素(例如铁、镍、钴以及某些稀土金属的组分)构成的合金或组合物。由于这些元素相对高的密度(一般约8g/cm3或500lb/ft3),采用相当大的量的铁磁性材料的设备趋于非常重。

机动车辆以多种方式采用铁磁性材料,特别是在芯螺线管设备中。这些范围从相对小(例如交流发电机或操作电动窗的电动机)到相对大(例如在混合动力车辆或全电动车辆的传动系统中)。具有比固有铁磁性元素的密度低得多的密度的铁磁性(包括亚铁磁性)材料或组合物的开发可潜在地减小重量,从而改进这类车辆的效率。

在先的公开内容已经显示了采用新的试剂配合物族来制备磁性纳米颗粒,例如MnBi纳米颗粒。由磁性纳米颗粒制备块状磁体一般包括粘结、熔化、烧结或以其它方式将单独的纳米颗粒彼此附着成为块体组合物的步骤。实现以上所述的特定方法可影响块状磁体的磁性能。需要由磁性纳米颗粒制造块状磁体的方法,该磁性纳米颗粒增强该块状磁体的磁性能。

发明内容

本技术总体上提供一种用于合成铁磁性MnBi纳米颗粒的方法、所合成的纳米颗粒及由该纳米颗粒形成块状MnBi磁体的方法。

在一方面,公开了用于合成MnBi纳米颗粒的方法。该方法包括向根据式I的配合物加入阳离子铋:

Mn0·Xy·LzI,

其中Q0是零价锰,X是氢化物分子,L是腈化合物,y是大于0的整数或分数值,且z是大于0的整数或分数值。在一些特定示例中,该氢化物分子是硼氢化锂和/或该腈化合物是月桂腈。

本教导还公开了由前述方法合成的MnBi纳米颗粒。

在又一方面,公开了由MnBi纳米颗粒形成块状MnBi磁体的方法。该方法包括向MnBi纳米颗粒的样品同时施加高热和高压的步骤。该MnBi纳米颗粒是通过包括向根据式I的配合物加入阳离子铋的步骤的方法制备的:

Mn0·Xy·LzI,

其中Q0是零价锰,X是氢化物分子,L是腈化合物,y是大于0的整数或分数值,且z是大于0的整数或分数值。在一些特定示例中,该氢化物分子是硼氢化锂和/或该腈化合物是月桂腈。

附图简要说明

结合以下附图,由实施方案的以下说明,本发明的多个方面和优点将变得明显,且更容易理解:

图1是由所公开的方法合成的MnBi纳米颗粒的样品的X射线衍射强度图;

图2是图1的MnBi的纳米颗粒的磁滞回线;

图3是一系列样品的磁滞回线,所述样品包括图1和2的MnBi纳米颗粒和在变化的条件下由所公开的方法形成的块状MnBi磁体;及

图4是包括图1和2的MnBi纳米颗粒和在变化的条件下由所公开的方法形成的块状MnBi磁体的样品的矫顽力(Hc)随温度变化的图。

具体实施方式

本公开内容描述了一种用于合成MnBi纳米颗粒的方法、所合成的MnBi纳米颗粒及由该合成的MnBi纳米颗粒形成块状MnBi磁体的方法。

该方法是便捷的且可重复的,所得到的纳米颗粒具有所需的铁磁性能,且这些性能在块状磁体中得到增强。

一种用于合成MnBi纳米颗粒的方法,该方法利用了称作Mn-LAERC(锰基络合阴离子元素试剂(manganese-basedLigatedAnionicElementReagent))的新试剂,该试剂公开在共同未决美国专利申请序列No.14/593,371中,将其全部并入本文中。该方法快速且可重复地生成了具有可超过500Oe的矫顽力的低温相(LTP)MnBi的铁磁性纳米颗粒。由该纳米颗粒形成块状MnBi磁体的方法快速且可重复地生成了在环境温度下(例如25℃)具有可超过0.5kOe的矫顽力的磁体。

因此,公开了用于合成MnBi纳米颗粒的方法。该方法包括向根据式I的配合物中加入阳离子铋的步骤:

Mn0·Xy·LzI,

其中Mn0是零价锰,X是氢化物分子,L是腈化合物,y是大于0的整数或分数值,且z是大于0的整数或分数值。

也可将根据式I的配合物称作“锰基络合阴离子元素试剂配合物”或Mn-LAERC。如本文中所采用的,短语“零价锰”指单质锰,也可将其描述为氧化态为零的锰金属。

如本文中所采用的,可交换的术语“氢化物分子”一般是指任何可起氢阴离子施主作用的分子物质。在不同的示例中,本文中所提及的氢化物分子可以是二元金属氢化物或“氢化物盐”(例如NaH或MgH2)、二元类金属氢化物(例如BH3)、配位金属氢化物(例如LiAlH4)、或配位类金属氢化物(例如LiBH4或Li(CH3CH2)3BH)。在一些实施例中,该氢化物分子将是LiBH4。在一些变体中,如上所述的术语氢化物分子可包括相应的氘化物或氚化物。

如本文所采用的,短语“腈化合物”是指具有式R-CN的分子。在不同的实施方案中,R可以是取代的或未取代的烷基或芳基基团,包括但不限于:直链、支链或环状烷基或烷氧基;或单环或多环芳基或杂芳基。在一些实施方案中,腈化合物的R基团将是直链烷基。在一个特定实施方案中,该腈化合物将是CH3(CH2)10CN,也可将其称作十二腈或月桂腈。

根据式I的值y限定了在该配合物中,氢化物分子与零价锰原子的化学计量比。该y值可包括大于0的任何整数或分数值。在一些示例中,可以采用1:1的化学计量比,其中y等于1。在其它示例中,可以优选氢化物分子相对于零价锰原子摩尔过量,例如,其中y等于2或4。在一些示例中,氢化物相对于零价锰的摩尔过量可确保在后续应用中存在足够的氢化物。在一些具体实施例中,y可等于3。

根据式I的值z限定了在该配合物中,腈化合物与零价锰原子的化学计量比。该z值可包括大于0的任何整数或分数值。在一些示例中,可以采用1:1的化学计量比,其中z等于1。在其它示例中,可以优选腈化合物相对于零价锰原子的摩尔过量,例如,其中z等于2或4。在一些具体实施例中,z可等于3。

本公开内容的配合物可以具有任何超分子结构,或不具有超分子结构。不受任何特定结构的束缚,且不受限制,该配合物可以作为在多个零价锰原子间散布有氢化物分子和/或腈化合物的超分子团簇存在。该配合物可以作为零价锰原子的团簇存在,其中该团簇表面涂覆有氢化物分子和/或腈化合物。该配合物可以作为单个的零价锰原子存在,该零价锰原子与另一零价锰原子之间具有很少、甚至没有分子连接,但是根据式I,每个零价锰原子与氢化物分子和腈化合物连接。任何这些微观结构或任何其它与式I一致的结构均落在本公开内容的范围内。

在用于合成MnBi纳米颗粒的方法的一些变体中,该配合物可以与第一溶剂溶剂化或与第一溶剂悬浮接触,和/或该阳离子铋可以与第二溶剂溶剂化或与第二溶剂悬浮接触。在配合物与第一溶剂溶剂化或与第一溶剂悬浮接触、且阳离子铋与第二溶剂溶剂化或与第二溶剂悬浮接触的变体中,该第一和第二溶剂可以是相同的溶剂或不同的溶剂。当存在时,该第一溶剂一般可以为不与存在于配合物中的氢化物分子反应的溶剂,且当存在时,该第二溶剂一般可以为存在于该配合物中的氢化物分子基本上可溶解于其中的溶剂。

可用作第一溶剂和/或第二溶剂的合适溶剂的非限制性实施例包括:丙酮、乙腈、苯、1-丁醇、2-丁醇、2-丁酮、叔丁醇、四氯化碳、氯苯、氯仿、环己烷、1,2-二氯乙烷、乙醚、二甘醇、二甘醇二甲醚(二乙二醇二甲醚)、1,2-二甲氧基乙烷(glyme,DME)、二甲醚、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、二烷、乙醇、乙酸乙酯、乙二醇、甘油、庚烷、六甲基磷酰胺(HMPA)、六甲基磷酰三胺(HMPT)、己烷、甲醇、甲基叔丁基醚(MTBE)、二氯甲烷、N-甲基-2-吡咯烷酮(NMP)、硝基甲烷、戊烷、石油醚(石脑油)、1-丙醇、2-丙醇、吡啶、四氢呋喃(THF)、甲苯、三乙基胺、邻二甲苯、间二甲苯或对二甲苯。

在一些特定实施例中,采用甲苯作为第一溶剂和第二溶剂。

在一些变体中,用于合成MnBi纳米颗粒的方法可包括使根据式I的配合物与自由表面活性剂(freesurfactant)接触的步骤。在包括使根据式I的配合物与自由表面活性剂接触的步骤的变体中,可以在加入阳离子铋的步骤之前、同时、或之后进行该接触步骤。

不受任何特定机理的束缚,可以相信,经向配合物(Mn-LAERC)加入阳离子铋,结合进该配合物的氢化物分子可以将阳离子铋还原为单质铋,之后该单质铋与锰形成合金。在用于合成MnBi纳米颗粒的方法的一些方面中,可以期望确保在试剂配合物中存在足够的氢化物分子的等同物,以将加入的阳离子铋还原至氧化态为零。在一些示例中,可以期望在加入阳离子铋之前或同时,向试剂配合物中加入额外的氢化物分子的等同物。

当使用时,在用于合成MnBi纳米颗粒的方法中所用的自由表面活性剂可以为本领域中任何已知的。合适的自由表面活性剂的非限制性实例可以包括非离子的、阳离子的、阴离子的、两性的、两性离子的、聚合物的表面活性剂以及其组合。这类表面活性剂一般具有基于烃的、基于有机硅烷的或基于氟碳化合物的亲脂部分。并不旨在限制,可适合类型的表面活性剂的实例包括:烷基硫酸盐和磺酸盐、石油和木质素磺酸盐、磷酸酯、磺基琥珀酸酯、羧酸盐、醇、乙氧基醇和烷基酚、脂肪酸酯、乙氧基酸、链烷醇酰胺、乙氧基胺、氧化胺、腈、烷基胺、季铵盐、羧基甜菜碱、磺基甜菜碱、或聚合物表面活性剂。在一些变体中,铋阳离子可作为具有阴离子表面活性剂(例如酰基阴离子)的铋盐的部分存在。在这样的变体中的铋盐的非限制性实例是新癸酸铋。

在采用自由表面活性剂的一些示例中,该自由表面活性剂将是一种能氧化、质子化或以其它方式共价改性、配价(datively)改性或离子改性该结合进配合物的氢化物分子的自由表面活性剂。

在一些变体中,该用于合成MnBi纳米颗粒的方法可在无水环境、无氧环境或无水且无氧环境下进行。例如,该用于合成MnBi纳米颗粒的方法可在氩气或真空下进行。

还公开了由上述用于合成MnBi纳米颗粒的方法制得的MnBi纳米颗粒,该纳米颗粒基本上由合金化的锰和铋组成。图1显示了本公开内容的MnBi纳米颗粒的X射线衍射(XRD)图,确定了该纳米颗粒是由合金化的MnBi形成的。通过向络合的阴离子的锰配合物Mn0·Li(BH4)3·[CH3(CH2)10CH]3中加入新癸酸铋来制得图1的MnBi纳米颗粒,可认为该新癸酸铋包括阳离子铋和自由表面活性剂两者。

在一些实施方案中,本公开内容的MnBi纳米颗粒将包括低温相(LTP)MnBi,这是唯一显示出铁磁性能的MnBi微晶结构。图2显示了图1的MnBi纳米颗粒的铁磁性磁滞回线,其证实了该纳米颗粒包括LTPMnBi。

此外还公开了由所公开的MnBi纳米颗粒形成块状MnBi磁体的方法,该MnBi纳米颗粒是由所公开的用于合成MnBi纳米颗粒的方法所制备的。用于形成块状MnBi磁体的方法包括向MnBi纳米颗粒的样品同时施加高热和高压的步骤,该MnBi纳米颗粒的样品是由该用于合成MnBi纳米颗粒的方法所制造的。如本文所采用的,短语“高温”可指在100-600℃范围内的温度。在一些示例中,短语“高温”可指在100-200℃范围内的温度。如本文所采用的,短语“高压”可指在10-1000MPa范围内的压力。在一些示例中,短语“高压”可指在10-100MPa范围内的压力。在一些特定示例中,高压可为40MPa。在一些变体中,高温可为150℃。

一般来说,施加高温和高压的步骤将进行一段持续时间。在一些特定变体中,该持续时间可以是任何不为零的、最长12小时的持续时间。在又一个特殊的变体中,该持续时间可在4-6小时的范围内。

图3显示了图1和2的“未压制的”纳米颗粒的铁磁性磁滞回线,其与三个块状磁体的铁磁性磁滞回线重叠,这三个块状磁体是由所公开的用于制造块状MnBi磁体的方法所制备的。经过对MnBi纳米颗粒在40MPa和150℃进行1、4或5小时的施加步骤,由该MnBi纳米颗粒的样品得到这三个块状磁体。如从图3中可看到的,当同时施加40MPa的高压和150℃的高温的持续时间从0增加至1、4小时时,样品的矫顽力和饱和磁化均增大。特别地,样品的矫顽力从约0.6增大至6.0、8.4kOe(千奥斯特)。在该实施例中,当施加高温和高压从4小时增加至6小时时,饱和磁化增长超过10倍,但是矫顽力从约8.4降低至2.3kOe。

图4绘制了作为分析温度的函数的六个不同样品的矫顽力。在此上下文中,短语“分析温度”是指进行矫顽力测试的温度,该温度不同于用于制造块状MnBi磁体的方法的“高温”,且与所述“高温”无关。

第一个样品,“未压制的”,其由如图1和2所示类型的MnBi纳米颗粒构成,其未经受用于制造块状MnBi磁体的方法。另四个样品是由用于制造块状MnBi磁体的方法所制备的块状磁体,其中高压是40MPa。如图4所示,高温是150℃或160℃,且进行同时施加高温和高压的持续时间是1、2或4小时。

首先需要指出的是,图4中的所有五个块状MnBi磁体都显示出随着温度升高而增大的矫顽力,这是LTPMnBi的独特特征,其进一步证实了LTPMnBi的存在。

不受任何特定理论的束缚,可以相信的是,向合成的MnBi纳米颗粒同时施加高温和高压的步骤可导致LTP晶相的发展,且可导致塑性变形的发生,这有助于在该样品内的单个MnBi微晶的磁矩的排列。如果该施加步骤的持续时间过长或高温过高,可能导致大量磁矩在相反方向上排列。

根据以下实施例对本发明进一步说明。需要理解的是,提供这些实施例是为了说明本发明的具体实施方案,而不应解释为限制本发明的范围。

实施例1Mn0·Li(BH4)3·[CH3(CH2)10CN]3的合成。

在氩气下,将0.496g的锰粉末、0.592g的硼氢化锂、4.912g的十二烷腈和6mL的甲苯加入球磨罐。将该混合物以300rpm研磨4小时,以制造锰基络合阴离子元素试剂配合物(Mn-LAERC)。

实施例2MnBi纳米颗粒的合成。

向320mL的甲苯加入12g来自实施例1的Mn-LAERC。单独地,通过在333mL甲苯中溶解112.984g的新癸酸铋来制备阳离子铋溶液。将该Mn-LAERC溶液和阳离子铋溶液组合,导致自发形成MnBi纳米颗粒。

实施例3块状MnBi磁体的形成。

在氩气气氛下,于40MPa和至多160℃的温度下,将来自实施例2的MnBi纳米颗粒在石墨冲头和模具中热压至多6小时。

实施例3矫顽力测试。

在10、100、200、300和400K的分析温度下,分别对实施例1和2中所制备的类型的纳米颗粒和块状磁体测试M(H)曲线。在每个温度下,从零磁化发生处的x截距来确定样品的矫顽力。结果显示在图2-4中。

前述描述涉及目前认为最实际可行的实施方案。然而,应当理解的是,本公开内容并不受限于这些实施方案,并且相反,本公开内容旨在覆盖包括在所附权利要求书的精神和范围内的多种改进和等同配置,该权利要求书的范围是根据最宽解释,以包括如法律所允许的所有这类改进和等同结构。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号