首页> 外文期刊>ACS nano >Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) core/shell nanocrystals prepared from CdSe/CdS nanocrystals by sequential cation exchange
【24h】

Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) core/shell nanocrystals prepared from CdSe/CdS nanocrystals by sequential cation exchange

机译:由CdSe / CdS纳米晶体通过顺序阳离子交换制备的发蓝光的ZnSe(Dot)/ ZnS(Rod)核/壳纳米晶体

获取原文
获取原文并翻译 | 示例
           

摘要

Great control over size, shape and optical properties is now possible in colloidal Cd-based nanocrystals, which has paved the way for many fundamental studies and applications. One popular example of such class of nanocrystals is represented by CdSe(spherical core)/CdS(rod shell) nanorods. These can be nearly monodisperse in size and shape and have strong and stable photoluminescence that is tunable in the visible range (mainly by varying the size of the CdSe core). The corresponding Zn-based core/shell nanorods would be good candidates for tunable emission in the blue-UV region. However, while the synthesis of ZnS nanocrystals with elongated shapes has been demonstrated based on the oriented-attachment mechanism, elongated ZnS shells are difficult to fabricate because the more common cubic phase of ZnS has a highly symmetric crystal structure. We report here a procedure based on a sequence of two cation exchange reactions, namely, Cd ~(2+)→Cu ~+ and then Cu ~+→Zn ~(2+), by which we transform colloidal CdSe(core)/CdS(shell) nanorods first into into Cu _2Se/Cu _2S nanorods, which are then converted into blue-UV fluorescent ZnSe(core)/ ZnS(shell) nanorods. The procedure transfers the morphological and structural information of the initial Cd-based nanorods to the Zn-based nanorods. Therefore, the final nanoparticles are made by a ZnSe dot embedded in a rod-shaped shell of wurtzite ZnS. Since in the starting Cd-based nanorods the size of the CdSe core and the length of the CdS shell can be well controlled, the same holds for the final Zn-based rods. In the second step of the exchange reaction (Cu ~+→Zn ~(2+)), a large excess of Zn ~(2+) ions added over the Cu ~+ ions present in the Cu _2Se/Cu _2S nanorods is the key requisite to obtain bright, band-edge emission (with quantum yields approaching 15%) with narrow line widths (approaching 75 meV). In these ZnSe/ZnS nanorods, photogenerated carriers appear to be more confined in the core region compared to their parent CdSe/CdS nanorods.
机译:现在可以对基于Cd的胶体纳米晶体进行尺寸,形状和光学性质的严格控制,这为许多基础研究和应用铺平了道路。这种类型的纳米晶体的一个流行的例子是CdSe(球形核)/ CdS(棒壳)纳米棒。它们的大小和形状几乎可以单分散,并具有在可见光范围内可调的强而稳定的光致发光(主要是通过改变CdSe核的大小)。相应的基于Zn的核/壳纳米棒将是蓝色UV区可调发射的良好候选者。然而,尽管已经基于定向附着机制证明了具有细长形状的ZnS纳米晶体的合成,但是由于更常见的ZnS立方相具有高度对称的晶体结构,因此难以制造细长的ZnS壳。我们在此报告一种基于两个阳离子交换反应的过程,即Cd〜(2+)→Cu〜+,然后Cu〜+→Zn〜(2+),通过该过程,我们可以转化胶体CdSe(core)/ CdS(壳)纳米棒首先转变为Cu _2Se / Cu _2S纳米棒,然后再转变为蓝紫外荧光ZnSe(核)/ ZnS(壳)纳米棒。该过程将最初的基于Cd的纳米棒转移到基于Zn的纳米棒的形态和结构信息。因此,最终的纳米颗粒由嵌入在纤锌矿型ZnS的棒状壳中的ZnSe点制成。由于在起始的基于Cd的纳米棒中CdSe核的大小和CdS壳的长度可以得到很好的控制,因此对于最终的Zn基纳米棒也是如此。在交换反应的第二步(Cu〜+→Zn〜(2+))中,与存在于Cu _2Se / Cu _2S纳米棒中的Cu〜+离子相比,添加的Zn〜(2+)离子大大过量。获得窄线宽(接近75 meV)的明亮带边发射(量子产率接近15%)的关键条件。在这些ZnSe / ZnS纳米棒中,与其母体CdSe / CdS纳米棒相比,光生载流子似乎更局限在核心区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号