...
首页> 外文期刊>Marine and Petroleum Geology >Deterministic estimation of gas-hydrate resource volume in a small area of the Ulleung Basin, East Sea (Japan Sea) from rock physics modeling and prestack inversion
【24h】

Deterministic estimation of gas-hydrate resource volume in a small area of the Ulleung Basin, East Sea (Japan Sea) from rock physics modeling and prestack inversion

机译:从岩石物理学建模和五峰反演中榆树盆地,东海(日本海)小区水分资源体积的确定性估算

获取原文
获取原文并翻译 | 示例

摘要

We made deterministic estimations of the gas-hydrate and in-place gas resource volumes in a small area in the northwestern Ulleung Basin, East Sea (Japan Sea) from 3-D pre-stack seismic data and well-log and core data from the UBGH2-6 well. We modeled the P-impedance (I-p) logs at the well for 0%-100% pore-space gas-hydrate saturation from the P-wave velocity (Vp) and density logs modeled by the simplified three-phase Biot-type equation (STPBE). Then, the I-p volume for the gas-hydrate-bearing zone (GHBZ) was constructed by pre-stack inversion and divided into 28 layers. The porosity and mineralogy along these layers were assumed to be uniform, respectively, to the porosity log upscaled to the layers and the sediment constituents at the well determined from the core samples. Next, the pore-space gas-hydrate saturation at every time sample of each layer was found by matching the I-p value of the time sample to the modeled I-p logs upscaled to the layers. The gashydrate saturation volume with a cell size of 25 m x 6.25 m x 1 ms was obtained from the product of the porespace gas-hydrate saturation volume and the porosity volume. The gas-hydrate saturation volume was converted into the depth volume based on the V-p value at each cell found by matching the pore-space gas-hydrate saturation of the cell to the modeled V-p logs. The estimated total gas-hydrate and gas resource volumes are about .43 x 10(s) m(3) and about 1.38 x 10(11) m(3), respectively.
机译:我们从3-D堆叠地震数据和良好的日志和核心数据中,从3-D堆叠地震数据和核心数据中,从西北楼Ubgh2-6嗯。我们在井中建模了P井,从P波速度(vp)和由简化的三相生物型方程建模的p波速度(vp)和密度日志为0%-100%的孔隙空气水合物饱和度( stpbe)。然后,通过预堆叠反转构建气体水合物承载区(GHBZ)的I-P体积,并分成28层。假设沿着这些层的孔隙率和矿物学分别是均匀的,以升高到从核心样品确定的孔中的孔隙率和沉积物成分。接下来,通过将时间样本的I-P值匹配到升高到图层的建模的I-P日志,找到每个层的每种时间样本的孔隙空气水合物饱和。具有25m×6.25m×1ms的电池尺寸的Gashydrate饱和体积是从孔隙气体水水合物饱和体积和孔隙体积的产物获得的。通过将电池的孔隙空气水合物饱和与建模的V-P日志相匹配,基于每个细胞的V-P值转化为深度体积的水水合物饱和体积。估计的总天然气水合物和气体资源体积分别为约43×10(3)和约1.38×10(11)米(3)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号