...
首页> 外文期刊>Magnetic Resonance in Chemistry: MRC >Improvement of bioactive metabolite production in microbial cultures-A systems approach by OSMAC and deconvolution-based (HNMR)-H-1 quantification
【24h】

Improvement of bioactive metabolite production in microbial cultures-A systems approach by OSMAC and deconvolution-based (HNMR)-H-1 quantification

机译:微生物培养物中生物活性代谢物生产的改善 - 一种由OSMAC和基于去卷积(HNMR)-H-1定量的系统方法

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, the screening of metabolites in microbial matrices is performed by monocultures. Nonetheless, the absence of biotic and abiotic interactions generally observed in nature still limit the chemical diversity and leads to "poorer" chemical profiles. Nowadays, several methods have been developed to determine the conditions under which cryptic genes are activated, in an attempt to induce these silenced biosynthetic pathways. Among those, the one strain, many compounds (OSMAC) strategy has been applied to enhance metabolic production by a systematic variation of growth parameters. The complexity of the chemical profiles from OSMAC experiments has required increasingly robust and accurate techniques. In this sense, deconvolution-based (HNMR)-H-1 quantification have emerged as a promising methodology to decrease complexity and provide a comprehensive perspective for metabolomics studies. Our present work shows an integrated strategy for the increased production and rapid quantification of compounds from microbial sources. Specifically, an OSMAC design of experiments (DoE) was used to optimize the microbial production of bioactive fusaric acid, cytochalasin D and 3-nitropropionic acid, and Global Spectral Deconvolution (GSD)-based (HNMR)-H-1 quantification was carried out for their measurement. The results showed that OSMAC increased the production of the metabolites by up to 33% and that GSD was able to extract accurate NMR integrals even in heavily coalescence spectral regions. Moreover, GSD-(HNMR)-H-1 quantification was reproducible for all species and exhibited validated results that were more selective and accurate than comparative methods. Overall, this strategy up-regulated important metabolites using a reduced number of experiments and provided fast analyte monitor directly in raw extracts.
机译:传统上,微生物基质中代谢物的筛选由单一栽培进行。尽管如此,在自然中通常观察到的生物和非生物相互作用仍然限制了化学多样性,并导致“较差”的化学型材。如今,已经开发了几种方法来确定激活隐秘基因的条件,以诱导这些沉默的生物合成途径。其中,一种菌株,许多化合物(OSMAC)策略已经应用于通过增长参数的系统变化来增强代谢生产。来自OSMAC实验的化学分布的复杂性需要越来越坚固且准确的技术。从这个意义上讲,基于去卷积的(HNMR)-H-1量化被出现为有希望降低复杂性的有希望的方法,并为代谢组学研究提供全面的视角。我们现在的工作表明,增加了生产和快速定量来自微生物来源的化合物的综合策略。具体地,使用实验(DOE)的OSMAC设计来优化生物活性镰糖酸,细胞蛋白D和3-硝基丙酸的微生物产生,并进行全局光谱折叠(GSD)(HNMR)-H-1定量为了他们的测量。结果表明,OSMAC通过高达33%的代谢物的产生增加,并且GSD即使在大量聚结谱区中也能够提取精确的NMR积分。此外,对于所有物种,GSD-(HNMR)-H-1定量可再现,并且表现出比对比方法更具选择性和准确的验证结果。总体而言,该策略使用减少的实验次数上调重要的代谢物,并直接在原子提取物中提供快速分析物监测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号