首页> 外文期刊>ACS nano >Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates
【24h】

Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates

机译:纳米结构钛酸锶锶在铁电聚合物纳米复合材料中的巨大室温电热效应

获取原文
获取原文并翻译 | 示例
           

摘要

The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.
机译:电热效应(ECE)是指将热能转换为可极化材料的电能,并且可以构成高效,环保的下一代制冷和动力技术的基础。铁电材料(例如陶瓷和聚合物膜)表现出较大的ECE,但是对于实际的冷却应用,这些整体式材料均具有其自身的局限性。在这项工作中,已经制备了具有系统地变化的形态的纳米尺寸的钛酸锶锶钡,以与铁电聚合物基质形成聚合物纳米复合材料。溶液处理的聚合物纳米复合材料通过铁电聚合物基体的高击穿强度和陶瓷纳米填料的极化随温度的大变化的协同作用而展现出非凡的室温ECE。发现在适度和高电场下均可以产生可观的ECE,并且通过调整铁电纳米填料的形态,例如增加纳米夹杂物的长宽比,可以大大增强ECE。已经系统地研究了纳米填料的几何形状对铁电聚合物的介电常数,极化,击穿强度,ECE和结晶度的影响。已经进行了基于相场模型的仿真以证实实验结果。凭借出色的冷却能量密度和制冷剂容量,聚合物纳米复合材料有望用于固态冷却应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号