...
首页> 外文期刊>ACS nano >Conductive Graphene Fibers for Wire-Shaped Supercapacitors Strengthened by Unfunctionalized Few-Walled Carbon Nanotubes
【24h】

Conductive Graphene Fibers for Wire-Shaped Supercapacitors Strengthened by Unfunctionalized Few-Walled Carbon Nanotubes

机译:未官能化的少壁碳纳米管增强了用于线形超级电容器的导电石墨烯纤维

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Graphene fibers are a promising electrode material for wire-shaped supercapacitors (WSSs) that can be woven into textiles for future wearable electronics. However, the main concern is their high linear resistance, which could be effectively decreased by the addition of highly conductive carbon nanotubes (CNTs). During the incorporation process, CNTs are typically preoxidized by acids or dispersed by surfactants, which deteriorates their electrical and mechanical properties. Herein, unfunctionalized few-walled carbon nanotubes (FWNTs) were directly dispersed in graphene oxide (GO) without preoxidation or surfactants, allowing them to maintain their high conductivity and perfect structure, and then used to prepare CNT-reduced GO (RGO) composite fibers by wet-spinning followed by reduction. The pristine FWNTs increased the stress strength of the parent RGO fibers from 193.3 to 385.7 MPa and conductivity from 53.3 to 210.7 S cm(1). The wire-shaped supercapacitors (WSSs) assembled based on these CNT-RGO fibers presented a high volumetric capacitance of 38.8 F cm(-3) and energy density of 3.4 mWh cm(3). More importantly, the performance of WSSs was revealed to decrease with increasing length due to increased resistance, revealing a key issue for graphene-based electrodes in WSSs
机译:石墨烯纤维是用于线形超级电容器(WSS)的有前途的电极材料,可以将其编织到纺织品中以用于将来的可穿戴电子产品。但是,主要问题是它们的高线性电阻,可以通过添加高导电性碳纳米管(CNT)来有效降低其线性电阻。在掺入过程中,CNT通常会被酸预氧化或被表面活性剂分散,这会降低其电气和机械性能。在此,将未官能化的短壁碳纳米管(FWNT)直接分散在氧化石墨烯(GO)中而不进行预氧化或表面活性剂,使其保持高导电性和完美的结构,然后用于制备CNT还原的GO(RGO)复合纤维通过湿纺然后还原。原始的FWNTs将RGO母体纤维的应力强度从193.3 MPa增加到385.7 MPa,将电导率从53.3 s增加到210.7 S cm(1)。基于这些CNT-RGO纤维组装的线形超级电容器(WSS)具有38.8 F cm(-3)的高体积电容和3.4 mWh cm(3)的能量密度。更重要的是,由于电阻增加,WSS的性能随长度的增加而降低,这揭示了WSS中基于石墨烯的电极的关键问题

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号