...
首页> 外文期刊>ACS nano >Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries
【24h】

Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries

机译:包含多硫化物诱导的固体电解质中间相和纳米结构的石墨烯框架的锂硫电池的双相锂金属阳极

获取原文
获取原文并翻译 | 示例

摘要

Lithium-sulfur (Li-S) batteries, with a theoretical energy density of 2600 Wh kg(-1), are a promising platform for high-energy and cost-effective electrochemical energy storage. However, great challenges such as fast capacity degradation and safety concerns prevent it from widespread application. With the adoption of Li metal as the anode, dendritic and mossy metal depositing on the negative electrode during repeated cycles leads to serious safety concerns and low Coulombic efficiency. Herein, we report a distinctive graphene framework structure coated by an in situ formed solid electrolyte interphase (SEI) with Li depositing in the pores as the anode of Li-S batteries. The graphene-based metal anode demonstated a superior dendrite-inhibition behavior in 70 h of lithiation, while the cell with a Cu foil based metal anode was short-circuited after only 4 h of lithiation at 0.5 mA cm(-2). The graphene-modified Li anode with SEI induced by the polysulfide-containing electrolyte improved the Coulombic efficiency to 97% for more than 100 cycles, while the control sample with Cu foil as the current collector exhibited huge fluctuations in Coulonnbic efficiency. The unblocked ion pathways and high electron conductivities of frameworks in the modified metal anode led to the rapid transfer of Li ions through the SEI and endowed the anode framework with an ion conductivity of 7.81 x 10(-2) mS Cm-1, nearly quintuple that of the Cu foil based Li metal anode. Besides, the polarization in the charge discharge process was halved to 30 mV. The stable and efficient Li deposition was maintained after 2000 cycles. Our results indicated that nanoscale interfacial electrode engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes, thus improving the safety of Li-S cells.
机译:锂硫(Li-S)电池的理论能量密度为2600 Wh kg(-1),是用于高能量和经济高效的电化学能量存储的有前途的平台。但是,诸如快速容量降低和安全问题之类的巨大挑战阻止了它的广泛应用。采用锂金属作为阳极,在反复循环中沉积在负极上的树枝状和生苔金属会引起严重的安全隐患和库仑效率低。本文中,我们报道了一种独特的石墨烯骨架结构,该结构被原位形成的固态电解质中间相(SEI)覆盖,其中Li沉积在孔中作为Li-S电池的阳极。石墨烯基金属阳极在锂化70小时后表现出优异的枝晶抑制性能,而带有铜箔基金属阳极的电池在0.5 mA cm(-2)下仅锂化4 h后发生短路。含多硫化物的电解质诱导的SEI石墨烯修饰的Li阳极在100多个循环中将库仑效率提高到97%,而以铜箔作为集电器的对照样品的库仑效率波动很大。改性金属阳极中骨架的畅通的离子通道和高电子电导率导致Li离子通过SEI的快速转移,并赋予阳极骨架7.81 x 10(-2)mS Cm-1的离子电导率,接近五倍铜箔基锂金属阳极。此外,电荷放电过程中的极化减半至30 mV。在2000次循环后,维持了稳定而有效的锂沉积。我们的结果表明,纳米级界面电极工程可能是解决锂金属阳极固有问题的有前途的策略,从而提高Li-S电池的安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号