...
首页> 外文期刊>ACS nano >Synthesis, characterization, and variable range hopping transport of pyrite (FeS2) nanorods, nanobelts, and nanoplates
【24h】

Synthesis, characterization, and variable range hopping transport of pyrite (FeS2) nanorods, nanobelts, and nanoplates

机译:黄铁矿(FeS2)纳米棒,纳米带和纳米板的合成,表征和变程跳跃传输

获取原文
获取原文并翻译 | 示例
           

摘要

We report the growth, structural, and electrical characterization of single-crystalline iron pyrite (FeS_2) nanorods, nanobelts, and nanoplates synthesized via sulfidation reaction with iron dichloride (FeCl _2) and iron dibromide (FeBr_2). The as-synthesized products were confirmed to be single-crystal phase pure cubic iron pyrite using powder X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. An intermediate reaction temperature of 425 C or a high sulfur vapor pressure under high temperatures was found to be critical for the formation of phase pure pyrite. Field effect transport measurements showed that these pyrite nanostructures appear to behave as a moderately p-doped semiconductor with an average resistivity of 2.19 ± 1.21 Ω·cm, an improved hole mobility of 0.2 cm~2 V~(-1) s~(-1), and a lower carrier concentration on the order of 10~(18)-10~(19) cm ~(-3) compared with previous reported pyrite nanowires. Temperature-dependent electrical transport measurements reveal Mott variable range hopping transport in the temperature range 40-220 K and transport via thermal activation of carriers with an activation energy of 100 meV above room temperature (300-400 K). Most importantly, the transport properties of the pyrite nanodevices do not change if highly pure (99.999%) precursors are utilized, suggesting that the electrical transport is dominated by intrinsic defects in pyrite. These single-crystal pyrite nanostructures are nice platforms to further study the carrier conduction mechanisms, semiconductor defect physics, and surface properties in depth, toward improving the physical properties of pyrite for efficient solar energy conversion.
机译:我们报告了通过与二氯化铁(FeCl _2)和二溴化铁(FeBr_2)的硫化反应合成的单晶黄铁矿(FeS_2)纳米棒,纳米带和纳米板的生长,结构和电学特性。使用粉末X射线衍射,拉曼光谱和透射电子显微镜确认合成后的产物为单晶相纯立方黄铁矿。发现425℃的中间反应温度或高温下的高硫蒸气压对于形成相纯黄铁矿至关重要。场效应传输测量表明,这些黄铁矿纳米结构表现为中等p掺杂的半导体,平均电阻率为2.19±1.21Ω·cm,空穴迁移率提高了0.2 cm〜2 V〜(-1)s〜(- 1),并且与先前报道的黄铁矿纳米线相比,载流子浓度较低,约为10〜(18)-10〜(19)cm〜(-3)。与温度有关的电传输测量结果显示,莫特在40-220 K的温度范围内发生了可变范围的跳跃传输,并且通过载流子的热激活进行传输,其激活能量高于室温(300-400 K)100 meV。最重要的是,如果使用高纯度(99.999%)的前驱体,则黄铁矿纳米器件的传输特性不会改变,这表明电传输受黄铁矿中的固有缺陷支配。这些单晶黄铁矿纳米结构是进一步深入研究载流子传导机理,半导体缺陷物理学和表面性质的良好平台,以改善黄铁矿的物理性质以实现有效的太阳能转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号