...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Efficiency of the spectral element method with very high polynomial degree to solve the elastic wave equation
【24h】

Efficiency of the spectral element method with very high polynomial degree to solve the elastic wave equation

机译:具有非常高的多项式求解弹性波方程的光谱元件方法的效率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The spectral element method (SEM) has gained tremendous popularity within the seismological community to solve the wave equation at all scales. Classic SEM applications mostly rely on degrees 4-8 elements in each tensorial direction. Higher degrees are usually not considered due to two main reasons. First, high degrees imply large elements, which make the meshing of mechanical discontinuities difficult. Second, the SEM's collocation points cluster toward the edge of the elements with the degree, degrading the time-marching stability criteria and imposing a small time step and a high numerical cost. Recently, the homogenization method has been introduced in seismology. This method can be seen as a preprocessing step before solving the wave equation that smooths out the internal mechanical discontinuities of the elastic model. It releases the meshing constraint and makes use of very high degree elements more attractive. Thus, we address the question of memory and computing time efficiency of very high degree elements in SEM, up to degree 40. Numerical analyses reveal that, for a fixed accuracy, very high degree elements require less computer memory than low-degree elements. With minimum sampling points per minimum wavelength of 2.5, the memory needed for a degree 20 is about a quarter that of the one necessary for a degree 4 in two dimensions and about one-eighth in three dimensions. Moreover, for the SEM codes tested in this work, the computation time with degrees 12-24 can be up to twice faster than the classic degree 4. This makes SEM with very high degrees attractive and competitive for solving the wave equation in many situations.
机译:光谱元素法(SEM)在地震界内获得了巨大的普及,以解决所有尺度的波浪方程。经典的SEM应用程序主要依赖于每个张相方向中的4-8个元素。由于两个主要原因,通常不考虑更高的程度。首先,高度意味着大量元素,这使得机械不连续性难以困难。其次,SEM的搭配点集群与程度朝向元素的边缘,降低了时间步长和强度的时间步长和高数量成本。最近,在地震学中引入了均质化方法。该方法可以被视为在求解平衡弹性模型的内部机械不连续性的波动方程之前被视为预处理步骤。它释放了啮合约束,并利用非常高度的元素更具吸引力。因此,我们解决了SEM中非常高度元素的存储器和计算时间效率的问题,高达40.数字分析显示,对于固定精度,非常高度元素需要比低度元素更少的计算机存储器。每个最小波长为2.5的最小采样点,学位20所需的存储器是大约四分之一的四个方面所需的内存,三维中的约为八分之一。此外,对于在这项工作中测试的SEM代码,具有度数12-24的计算时间可以比经典度为4。这使得SEM具有非常高度的具有非常高的程度和竞争来解决许多情况下的波浪方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号