首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Anisotropic full-waveform inversion of crosshole seismic data: A vertical symmetry axis field data application
【24h】

Anisotropic full-waveform inversion of crosshole seismic data: A vertical symmetry axis field data application

机译:十字孔地震数据的各向异性全波形反演:垂直对称轴现场数据应用

获取原文
获取原文并翻译 | 示例
       

摘要

Anisotropic waveform tomography (AWT) uses anisotropic traveltime tomography followed by anisotropic full-waveform inversion (FWI). Such an approach is required for FWI in cases in which the geology is likely to exhibit anisotropy. An important anisotropy class is that of transverse isotropy (TI), and the special case of TI media with a vertical symmetry axis (VTI) media is often used to represent elasticity in undeformed sedimentary layering. We have developed an approach for AWT that uses an acoustic approximation to simulate waves in VTI media, and we apply this approach to crosshole data. In our approach, the best-fitting models of seismic velocity and Thomsen VTI anisotropy parameters are initially obtained using anisotropic traveltime tomography, and they are then used as the starting models for VTI FWI within the acoustic approximation. One common problem with the acoustic approach to TI media is the generation of late-arriving (spurious) S-waves as a by-product of the equation system. We used a Laplace-Fourier approach that effectively damps the spurious S-waves to suppress artifacts that might otherwise corrupt the final inversion results. The results of applying AWT to synthetic data illustrate the trade-offs in resolution between the two parameter classes of velocity and anisotropy, and they also verify anisotropic traveltime tomography as a valid method for generating starting models for FWI. The synthetic study further indicates the importance of smoothing the anisotropy parameters before proceeding to FWI inversions of the velocity parameter. The AWT technique is applied to real crosshole field gathers from a sedimentary environment in Western Canada, and the results are compared with the results from a simpler (elliptical) anisotropy model. The transversely isotropic approach yields an FWI image of the vertical velocity that (1) exhibits a superior resolution and (2) better predicts the field data than does the elliptical approach.
机译:各向异性波形断层扫描(AWT)使用各向异性旅行时间断层扫描,然后各向异性全波形反转(FWI)。在地质可能表现出各向异性的情况下,FWI需要这种方法。重要的各向异性类是横向同位素(Ti)的类别,并且具有垂直对称轴(VTI)介质的Ti介质的特殊情况通常用于表示未变形沉积层中的弹性。我们已经开发了一种使用声学近似来模拟VTI媒体中的波的AWT的方法,我们将这种方法应用于跨孔数据。在我们的方法中,最初使用各向异性旅行时间断层扫描获得最佳拟合模型和Thomsen VTI各向异性参数,然后将它们用作声学近似值内的VTI FWI的启动模型。用于TI介质的声学方法的一个常见问题是作为等式系统的副产物产生后到达(伪)的S波的产生。我们使用了一个Laplace-Fourier方法,有效地抑制了虚假的S波来抑制可能损坏最终反演结果的伪影。应用AWT对合成数据的结果说明了两个参数类的速度和各向异性之间的分辨率的权衡,并且它们还验证了各向异性旅行时间断层扫描作为用于为FWI生成起始模型的有效方法。合成研究进一步表明在进入速度参数的FWI逆转之前平滑各向异性参数的重要性。 AWT技术适用于加拿大西部沉积环境的真正横山场聚集,并将结果与​​来自更简单(椭圆形)各向异性模型的结果进行比较。横向各向同性的方法产生的FWI图像(1)呈现出卓越的分辨率,并且(2)更好地预测现场数据而不是椭圆方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号