...
首页> 外文期刊>Geobiology >Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations
【24h】

Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations

机译:移位微生物群落维持铁素沉积物孵化中的多元铁还原和甲烷化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reactive Fe(III) minerals can influence methane (CH4) emissions by inhibiting microbial methanogenesis or by stimulating anaerobic CH4 oxidation. The balance between Fe(III) reduction, methanogenesis, and CH4 oxidation in ferruginous Archean and Paleoproterozoic oceans would have controlled CH4 fluxes to the atmosphere, thereby regulating the capacity for CH4 to warm the early Earth under the Faint Young Sun. We studied CH4 and Fe cycling in anoxic incubations of ferruginous sediment from the ancient ocean analogue Lake Matano, Indonesia, over three successive transfers (500days in total). Iron reduction, methanogenesis, CH4 oxidation, and microbial taxonomy were monitored in treatments amended with ferrihydrite or goethite. After three dilutions, Fe(III) reduction persisted only in bottles with ferrihydrite. Enhanced CH4 production was observed in the presence of goethite, highlighting the potential for reactive Fe(III) oxides to inhibit methanogenesis. Supplementing the media with hydrogen, nickel and selenium did not stimulate methanogenesis. There was limited evidence for Fe(III)-dependent CH4 oxidation, although some incubations displayed CH4-stimulated Fe(III) reduction. 16S rRNA profiles continuously changed over the course of enrichment, with ultimate dominance of unclassified members of the order Desulfuromonadales in all treatments. Microbial diversity decreased markedly over the course of incubation, with subtle differences between ferrihydrite and goethite amendments. These results suggest that Fe(III) oxide mineralogy and availability of electron donors could have led to spatial separation of Fe(III)-reducing and methanogenic microbial communities in ferruginous marine sediments, potentially explaining the persistence of CH4 as a greenhouse gas throughout the first half of Earth history.
机译:反应性Fe(III)矿物可以通过抑制微生物甲烷化或通过刺激厌氧CH4氧化来影响甲烷(CH4)排放。 Fe(III)减少,甲烷化和古普罗科奇海洋的氧化与CH4氧化之间的平衡会对大气进行控制的CH4势次,从而调节CH4在淡淡的年轻阳光下温暖早期地球的能力。我们研究了来自印度尼西亚古代海洋模拟湖马扎诺的稻瘟病沉积物的CH4和Fe循环,三次连续转移(总共500天)。在用Ferrihydrite或甲酸酯修正的处理中监测铁还原,甲烷化,CH4氧化和微生物分类物。三次稀释后,Fe(iii)减少仅在瓶子中持续有瓶子。在甲磺酸盐存在下观察到增强的CH4生产,突出了反应性Fe(III)氧化物抑制甲烷的可能性。用氢气,镍和硒的培养基没有刺激甲烷。 Fe(III)依赖性CH4氧化存在有限的证据,尽管有些孵育显示CH4刺激的Fe(III)减少。 16S RRNA型材在浓缩过程中不断变化,在所有治疗中未经定义的订单脱硫成员的终极主导地位。在孵化过程中,微生物多样性显着下降,Ferrihydrite与乙石修正案之间的微妙差异。这些结果表明,Fe(III)氧化物矿物学和电子供体的可用性可能导致铁素海洋沉积物中的Fe(III)和甲状腺微生物群落的空间分离,潜在地解释CH4在整个第一家中作为温室气体的持久性一半的地球历史。

著录项

  • 来源
    《Geobiology》 |2017年第5期|共12页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号