首页> 外文期刊>Geoderma: An International Journal of Soil Science >The generation and redistribution of soil cations in high elevation catenas in the Fraser Experimental Forest, Colorado, US
【24h】

The generation and redistribution of soil cations in high elevation catenas in the Fraser Experimental Forest, Colorado, US

机译:弗雷泽实验森林,科罗拉多州的高海拔Catenas阳离子的发电和再分配

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Pedogenic processes imprint their signature on soils over the course of thousands to millions of years in most soil systems. Variation in soil forming processes such as parent material weathering, organic material additions, hydrologic processes, and atmospheric additions account for the distribution and sourcing of cations in ecosystems, and hence exert a strong influence on ecosystem productivity. Soil nutrient dynamics of cations also provide an indication of the dominant soil forming processes at work in a particular system. To gain insight into the generation and distribution of the soil cation pool in the Fraser Experimental Forest (FEF), we combined geochemical mass balance techniques and isotopic analyses of soil geochemical data to pedons across eight soil catenas in complex mountain terrain typical of the central Rocky Mountains. We found that mass gains in the FEF soils are primarily attributable to pedogenic additions of Ca to the soil mantle via atmospheric dust, and specifically that soil catenas on the summit landscapes were most enriched in Ca. Our data also show that atmospheric deposition contributions (calculated using Sr isotope ratios) to soils is as high as 82% (+/- 3% SD), and that this isotopic signature in A-horizons and subsurface soil horizons diverges along a soil catena, due to both vertical and lateral hydrologic redistribution processes. Our results suggest that long term soil development and associated chemical signatures at the FEF are principally driven by the coupling of landscape scale cation supply processes, snow distribution, and snowmelt dynamics. Soil development models describing pedogenesis across catenas in montane ecosystems must pay special attention to atmospheric inputs and their redistribution. Any changes to these dynamics will affect productivity and soil/water chemistry in such ecosystems as investigated here.
机译:基础过程在大多数土壤系统中,在数千到数百万年的过程中对土壤的签名印记。土壤成型过程的变异如母材风化,有机材料添加,水文过程和大气添加算法考虑到生态系统中阳离子的分布和采购,因此对生态系统生产力产生了强烈影响。阳离子的土壤养分动力学还提供了在特定系统中工作中的主要土壤形成过程的指示。要深入了解弗雷泽实验森林(FEF)中土壤阳离子池的发电和分布,我们将地球化学质量平衡技术和体内地球化学数据的同位素分析综合给跨山地地形中的八层土地上的施工到跨国岩石山脉。我们发现FEF土壤中的质量增益主要是由于大气粉尘对土壤幔的基础添加,以及峰会景观中的土壤连带子最丰富。我们的数据还表明,大气沉积贡献(使用SR同位素比计算)对土壤的贡献高达82%(+/- 3%SD),并且在一个视野和地下土壤视野中的这种同位素签名沿着土壤卡特纳分流,由于垂直和横向水文再分配过程。我们的研究结果表明,长期土壤开发和FEF的相关化学签名主要由景观规模阳离子供应过程,雪分布和融雪动力学的耦合来驱动。在蒙太烷生态系统中描述CatenaS的土壤开发模型必须特别注意大气投入及其再分配。这些动态的任何变化都会影响在此类生态系统中的生产率和土壤/水化学,如此调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号