首页> 外文期刊>Advances in Mechanical Engineering >Fractal Prediction Model for Normal Contact Damping of Joint Surfaces considering Friction Factors and Its Simulation
【24h】

Fractal Prediction Model for Normal Contact Damping of Joint Surfaces considering Friction Factors and Its Simulation

机译:考虑摩擦因素的连接面法向接触阻尼分形预测模型及其仿真

获取原文
获取原文并翻译 | 示例
           

摘要

To research the dynamic characteristics of the joint surfaces from the microperspective, the fractal prediction model of the normal contact damping of joint surfaces is established based on the "solid-gap-solid" contact model which was proposed by the author, tribology theory, and contact fractal theory. And the kinetic model of joint surfaces is improved to a certain extent. The influences of actual contacting area, friction coefficient, and the fractal dimension on the normal contact damping are revealed by the research of numerical simulation. Simulation results show that the normal contact damping of joint surfaces decreases to a constant value with the increase of actual contacting area, increases with the increase of friction coefficient, and decreases with the increase of fractal dimension. Actual contacting area influences the location of the turning point of the C-n*-mu (critical friction coefficient), and the critical friction coefficient increases with the increase of actual contacting area. Normal damping coefficient of joint surfaces continuously decreases with the increase of fractal dimension and the difference of magnitude exists between normal contact damping coefficients with different fractal dimension values.
机译:为了从微观角度研究接合面的动态特性,基于作者提出的“固体-间隙-固体”接触模型,摩擦学理论和方法,建立了接合面法向接触阻尼的分形预测模型。接触分形理论。关节表面的动力学模型得到了一定程度的改善。通过数值模拟研究,揭示了实际接触面积,摩擦系数和分形维数对法向接触阻尼的影响。仿真结果表明,关节表面的法向接触阻尼随着实际接触面积的增加而减小到恒定值,随着摩擦系数的增加而增加,随着分形维数的增加而减小。实际接触面积影响C-n * -mu(临界摩擦系数)转折点的位置,并且临界摩擦系数随实际接触面积的增加而增加。随着分形维数的增加,接合面的法向阻尼系数不断减小,分形维数不同的法向接触阻尼系数之间存在大小差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号