...
首页> 外文期刊>Gear technology >Impact of Root Geometry Manufacturing Deviations from a Theoretical Hob Rack on Gear Bending Stress
【24h】

Impact of Root Geometry Manufacturing Deviations from a Theoretical Hob Rack on Gear Bending Stress

机译:根几何制造偏差从理论滚刀架对齿轮弯曲应力的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High reliability, superior efficiency, and light weight are key requirements of mechanical power transmission systems, such as automotive transmissions. The competing design requirements pose a challenge to gear designers. Rigorous engineering analysis and sophisticated computational tools might be needed to help in finding the best compromise of design parameters and product performance requirements. One important aspect to be considered during the gear design phase is the manufacturing process. Different manufacturing processes can be used to produce gears, such as hobbing, shaping, and milling (Ref. 1). Each one of them has its advantages and limitations. Gear hobbing is a cost-effective and widely used method of cutting gear teeth (Ref. l). This generating process makes both the tooth involute flanks and root fillet. The involute flanks can be finished by a post-process such as shaving, grinding, or honing (Ref. 1). In the hobbing operation, root fillets are generated by the hob rack tip corner. The generated root fillet is not a true radius, but a trochoid form (Ref. 2). An undercut root fillet is formed when the "trochoid lies inside a line drawn tangent to the involute profile at the point of intersection of the involute and the trochoid" (Ref. 3) (Fig. 1). Under certain conditions the trochoid form may intersect the tooth involute flanks above the start of active profile, resulting in undercut (Ref. 4). Undercut is generally considered an undesired result of the generating process because it may affect load distribution and reduce gear load capacity (Refs. 3, 5). Undercut was comprehensively investigated by Su and Houser (Ref. 4), and Pedrero et al. (Ref. 5).
机译:高可靠性,卓越的效率和重量轻,是机械动力传输系统的关键要求,例如汽车传输。竞争设计要求对齿轮设计师构成挑战。可能需要严格的工程分析和复杂的计算工具,以帮助找到设计参数和产品性能要求的最佳折衷。在齿轮设计阶段期间要考虑的一个重要方面是制造过程。不同的制造工艺可用于生产齿轮,例如滚动,整形和铣削(参考文献1)。他们中的每一个都有其优点和局限性。齿轮滚动是一种经济效益和广泛使用的切割齿轮齿(参考文献)。该产生过程使牙齿缺口侧翼和根圆角。渐开线侧面可以通过剃须,研磨或珩磨(参考文献1)进行后工艺来完成。在滚齿操作中,根圆角由滚刀架尖角产生。生成的根圆角不是真正的半径,而是一种杂色的形式(参考文献2)。当“穿着叶片在渐开线和传叶片的交叉点处与渐渐渐渐的渐变型材的线内部绘制到渐渐渐渐的概况”(参考文献3)时,形成底切根圆角。在某些条件下,穿越形状可能与活性型谱的开始之上的牙齿缺口相交,导致底切(参考文献4)。底切通常被认为是发电过程的不期望的结果,因为它可能会影响负载分布并减少齿轮载荷能力(参考文献3,5)。 Su和Houser(参考文献4)和Pedrero等人全面调查底切。 (参考文献5)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号