...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >A multi-method, multi-scale theoretical study of He and Ne diffusion in zircon
【24h】

A multi-method, multi-scale theoretical study of He and Ne diffusion in zircon

机译:一种多方法,多规模的HE和NE扩散在锆石中的多规模理论研究

获取原文
获取原文并翻译 | 示例

摘要

The quantification of He and Ne diffusion behavior in crystals rich in U and Th such as zircon is key for the interpretation of (U-Th)/He-4 and (U-Th)/Ne-21 thermochronometric ages. Multiple parameters such as chemical substitution, channel obstruction and damage can modify the diffusivity compared to a pristine structure. To investigate the impact of these parameters, we have conducted a theoretical diffusion study combining a series of methods and approaches to address the problem across the necessary range of scales (atomic to crystal size). First, using quantum calculation, we determine the different He and Ne insertion sites, insertion energies and diffusion pathways at the atomic scale for an ideal pristine zircon structure (i.e. damage free). These results serve as input for a 3D random walk simulation of atomic trajectories that provides diffusion coefficients for damage-free zircon crystals. Second, as natural zircon crystals are not perfect, we model the impact of different types of damage and diffusion pathway obstruction at the atomic level on He and Ne diffusion in 3D. The calculated He and Ne diffusion coefficients for pure ZrSiO4 exhibit strongly anisotropic behavior and very high diffusivity along the taxis, and with 3D, closure temperatures of -197 degrees C and -202 degrees C respectively. The results for He are comparable to previous DFT studies but strongly different from experimental diffusion results; results for Ne are similar in this respect. Modelling the impact of different types of damage (vacancies, recoil, fission, voids or fluid inclusions) and obstruction on He and Ne diffusion reveals important implications for the (U-Th)/He and (U-Th)/Ne thermochronometers. First, obstruction alone does not significantly modify He and Ne diffusion except to reduce anisotropy. Second, trapping is the primary mechanism altering He and Ne diffusion even at low dose, and we predict the maximal trapping energies for He and Ne to be 164 and 320 kJ/mol, similar to values inferred from experimental data. We also propose that the closure temperature increases non-linearly with damage, with effective trapping energy increasing with dose until a threshold, possibly corresponding to a percolation transition, after which retentivity decreases. Based on field data sets we also anticipate a value for this threshold of around similar to 2-5 x 10(17) alpha/g, lower than previously proposed. We show Ne to be highly blocked by damage and predict similar diffusion behavior to He, but with higher retentivity. We demonstrate the importance of investigating rare gas diffusion at the atomic level for comparison with experimental data, in order to build a predictive diffusion law at different scales. (C) 2019 Elsevier Ltd. All rights reserved.
机译:富含U和TH的晶体中的HE和NE扩散行为的定量是ZIRCON的键的键,用于解释(U-TH)/ HE-4和(U-TH)/ NE-21 Thermochronometric Ages。与原始结构相比,多种参数如化学取代,通道阻塞和损坏可以改变扩散率。为了调查这些参数的影响,我们进行了一个理论扩散研究,结合了一系列方法和方法来解决在必要范围的尺度范围内(原子为晶体尺寸)。首先,使用量子计算,我们确定理想型锆石结构的原子秤的不同HE和网网,插入能量和扩散途径(即自由损坏)。这些结果用作原子轨迹的3D随机步道模拟的输入,其提供无损坏的锆晶体的扩散系数。其次,由于天然锆石晶体不完美,我们模拟了不同类型损伤和扩散途径障碍的影响,在3D中的原子水平和网元扩散。计算出的HEA和NE扩散系数对于纯ZRSIO4表现出强烈各向异性的行为和沿着出租车的非常高的扩散性,并且分别具有-197摄氏度的3D,闭合温度为-197摄氏度。他的结果与先前的DFT研究相当,但与实验扩散结果强烈不同;在这方面的结果是相似的。模拟不同类型的损伤(空位,反冲,裂变,空隙或流体夹杂物)和梗阻对他和网元扩散的影响揭示了对(U-TH)/ HE和(U-TH)/ NE Thermochronometers的重要意义。首先,除了减少各向异性之外,单独的阻碍不会显着修改他和NE扩散。其次,诱捕是即使在低剂量下改变他和NE扩散的主要机制,我们预测他和NE的最大捕获能量为164和320 kJ / mol,类似于从实验数据推断的值。我们还提出闭合温度随着损坏而非线性地增加,具有有效的捕获能量,其剂量增加,直到阈值,可能对应于渗透转变,之后保持性降低。基于现场数据集,我们还预期此阈值的值与2-5×10(17)alpha / g,低于先前提出的。我们展示了NE,以受到损坏的高度阻挡,并预测他的类似扩散行为,但保持性更高。我们展示了与实验数据进行比较的原子水平对原子水平的稀有气体扩散的重要性,以便在不同尺度上建立预测的扩散法。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号