首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Magnesite formation in playa environments near Atlin, British Columbia, Canada
【24h】

Magnesite formation in playa environments near Atlin, British Columbia, Canada

机译:在阿斯林,不列颠哥伦比亚省,加拿大附近的Playa环境的菱镁矿

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The hydromagnesite-magnesite playas near Atlin, British Columba, Canada are unique Mg-carbonate depositional environments that have formed at Earth's surface since the end of the last deglaciation. This study elucidates the mechanisms, pathways, and rates of magnesite (MgCO3) formation in these near-surface environments, which are challenging to study in short-duration laboratory experiments because magnesite precipitation is extremely slow at low temperature. The Atlin playas, having formed over millennia, contain abundant magnesite as well as a suite of other Mg- and Ca-carbonate minerals. Mineralogical and textural evidence demonstrate that hydromagnesite [Mg-5(CO3)(4)(OH)(2)center dot 4H(2)O] forms at least in part through transformation of more hydrated phases, e.g., lansfordite (MgCO3 center dot 5H(2)O). Deposition of these hydrated Mg-carbonate minerals is limited by the evaporative flux, and thus, is effectively transport-controlled at the scale of the playas. Magnesite is a spatially distinct phase from hydromagnesite and its crystal morphology varies with depth indicating variable crystal growth mechanisms and precipitation rates. Particle size distributions and mineral abundance data indicate that magnesite formation is nucleation-limited. Furthermore, mineralogical data as well as stable and radiogenic isotope data support magnesite formation starting after the majority of hydromagnesite had been deposited likely resulting from long induction times and slow precipitation rates. Hydrated Mg-carbonate minerals precipitate relatively rapidly and control pore water chemistry while magnesite remains highly supersaturated, and thus, is reaction-controlled. This difference in controlling regime allows for magnesite abundance to increase over time without the loss of hydromagnesite such as through its transformation, which the data also does not support. We estimate rates of magnesite formation (nucleation + crystal growth) in the range of 10(-17) to 10(-16) mol
机译:加拿大不列颠哥伦比亚州阿斯林附近的含氢镁矿石谷物Playas是独特的Mg-碳酸盐沉积环境,自上次脱盐结束以来在地球表面形成。本研究阐明了这些近表面环境中的菱镁矿(MgCO3)形成的机制,途径和率,这是在短期实验室实验中研究的挑战,因为菱镁矿在低温下极慢。在千年内形成的Atlin Playas含有丰富的菱镁矿以及套其他Mg-和Ca碳酸盐矿物质。矿物学和纹理证据表明,氢化物岩[Mg-5(CO 3)(4)(OH)(2)中心点4H(2)O]至少部分地通过改变更多的水合相,例如兰斯福德(MgCO3中心点5h(2)o)。沉积这些水合的Mg-碳酸盐矿物受蒸发助焊剂的限制,因此,在Playas的规模中有效地控制。菱镁矿是肼石的空间不同的相位,其晶体形态随深度而变化,指示可变晶体生长机制和降水率。粒度分布和矿物丰度数据表明菱镁矿形成是核心限制的。此外,矿物学数据以及稳定和辐射同位素数据支持菱镁矿形成后,在大多数含氢岩后开始沉积可能是由于长的诱导时间和缓慢的沉淀速率沉积。水合的Mg-碳酸盐矿物沉淀得相对较快,控制孔隙水化学,而菱镁矿仍然高度过饱和,因此是反应控制的。这种控制制度的这种差异允许菱镁质量随着时间的推移而增加,而不会通过其转换,例如通过其转换,数据也不支持。我们估计菱镁矿地层的速率(核酸+晶体生长)在10(-17)至10(-16)摩尔的范围内

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号