首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Experimental investigation of hydrodynamics and heat transport during vertical coalescence of multiple successive drops impacting a hot wall under saturated vapor atmosphere
【24h】

Experimental investigation of hydrodynamics and heat transport during vertical coalescence of multiple successive drops impacting a hot wall under saturated vapor atmosphere

机译:饱和蒸汽气氛下热壁垂直聚结垂直聚结期间流体动力学和热传输的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, hydrodynamics and heat transport during the vertical coalescence of multiple successive drops impacting a hot wall are analyzed experimentally. This study addresses the influence of wall superheat and the frequency of drop generation on the hydrodynamics and heat transport. The experiments are conducted under a pure vapor atmosphere with the refrigerant FC-72 at a saturation temperature of 54.5 degrees C, corresponding to a system pressure of 0.94 bar. The drops are generated with a constant diameter of 1.14 mm and a constant impact velocity of 0.54 m s(-1). An infrared camera with a high spatial and temporal resolution is used to capture the temperature field on the surface of the heater. The local heat flux distribution is derived from the temperature field by solving the transient three-dimensional heat conduction equation within the substrate. The total heat flow is evaluated by integrating the local heat flux over the footprint of the drop. The impact parameters (drop size and impact velocity) are evaluated through post-processing of the black/white images captured using a high-speed camera. The maximum spreading radius and maximum heat flow observed after the impact of each successive drop are higher than those observed after the impact of the previous drop. For instance, in the case of a wall superheat of 12.4 K and an impact frequency of 10 Hz, the maximum spreading radius and maximum heat flow observed after the impact of the fourth drop increased by approximately 35% compared with those observed after the impact of the first drop on a dry wall. The distribution of wall heat flux during the spreading phase of the second impacting drop is characterized by the appearance of two thin ring-shaped zones of high heat flux. The time evolutions of the drop shape and heat flow depend on the wall superheat and are independent of the frequency of drop generation within the studied range of parameters.
机译:在实验中分析了在该研究中,在撞击热壁的多次连续下降的垂直聚结期间的流体动力学和热传输进行了实验。该研究解决了壁过热的影响和流体动力学和热传输对液滴发电的影响。实验在纯蒸汽气氛下在纯蒸汽气氛下进行,制冷剂Fc-72在54.5℃的饱和温度下,对应于0.94巴的系统压力。恒定直径为1.14mm的液滴,恒定冲击速度为0.54 m s(-1)。具有高空间和时间分辨率的红外相机用于捕获加热器表面上的温度场。局部热量通量分布通过求解基板内的瞬态三维导热方程来源于温度场。通过将局部热通量集成在下降的占地面积上来评估总热流。通过使用高速相机捕获的黑/白色图像的后处理来评估冲击参数(滴尺寸和冲击速度)。在每次连续下降的冲击后观察到的最大散布半径和最大热流高于前一滴冲击后观察到的最大热流。例如,在12.4k的壁过热的情况下,在10Hz的冲击频率的情况下,与在撞击后观察到的那些相比,第四次下降的冲击后观察到的最大扩散半径和最大热流增加约35%干墙上的第一个滴。在第二冲击液滴的扩散阶段期间壁热通量的分布的特征在于两个薄环形区域的高热通量的外观。落叶形状和热流的时间演变取决于壁过热,并且与所研究的参数范围内的下降频率无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号