...
首页> 外文期刊>Experimental Neurology >Zn2+-induced disruption of neuronal mitochondrial function: Synergism with Ca2+, critical dependence upon cytosolic Zn2+ buffering, and contributions to neuronal injury
【24h】

Zn2+-induced disruption of neuronal mitochondrial function: Synergism with Ca2+, critical dependence upon cytosolic Zn2+ buffering, and contributions to neuronal injury

机译:Zn2 +诱导神经元线粒体功能的破坏:与Ca2 +的协同作用,对细胞溶质Zn2 +缓冲的关键依赖性,以及对神经元损伤的贡献

获取原文
获取原文并翻译 | 示例

摘要

Excitotoxic Zn2+ and Ca2+ accumulation contributes to neuronal injury after ischemia or prolonged seizures. Synaptically released Zn2+ can enter postsynaptic neurons via routes including voltage sensitive Ca2+ channels (VSCC), and, more rapidly, through Ca2+ permeable AMPA channels. There are also intracellular Zn2+ binding proteins which can either buffer neuronal Zn2+ influx or release bound Zn2+ into the cytosol during pathologic conditions. Studies in culture highlight mitochondria as possible targets of Zn2+; cytosolic Zn2+ can enter mitochondria and induce effects including loss of mitochondrial membrane potential (Delta Psi(m) ), mitochondrial swelling, and reactive oxygen species (ROS) generation. While brief (5 min) neuronal depolarization (to activate VSCC) in the presence of 300 mu M Zn2+ causes substantial delayed neurodegeneration, it only mildly impacts acute mitochondrial function, raising questions as to contributions of Zn2+-induced mitochondrial dysfunction to neuronal injury.& para;& para;Using brief high (90 mM) K+/Zn2+ exposures to mimic neuronal depolarization and extracellular Zn2+ accumulation as may accompany ischemia in vivo, we examined effects of disrupted cytosolic Zn2+ buffering and/or the presence of Ca2+, and made several observations: 1. Mild disruption of cytosolic Zn2+ buffering-while having little effects alone-markedly enhanced mitochondrial Zn2+ accumulation and dysfunction (including loss of Delta Psi(m) , ROS generation, swelling and respiratory inhibition) caused by relatively low (10-50 mu M) Zn2+ with high K+. 2. The presence of Ca2+ during the Zn2+ exposure decreased cytosolic and mitochondrial Zn2+ accumulation, but markedly exacerbated the consequent dysfunction. 3. Paralleling effects on mitochondria, disruption of buffering and presence of Ca2+ enhanced Zn2+-induced neurodegeneration. 4. Zn2+ chelation after the high K+/Zn2+ exposure attenuated both ROS production and neurodegeneration, supporting the potential utility of delayed interventions. Taken together, these data lend credence to the idea that in pathologic states that impair cytosolic Zn2+ buffering, slow uptake of Zn2+ along with Ca2+ into neurons via VSCC can disrupt the mitochondria and induce neurodegeneration.
机译:兴奋毒性Zn2 +和Ca2 +积累有助于缺血或延长癫痫发作后的神经元损伤。突触释放的Zn2 +可以通过包括电压敏感CA2 +通道(VSCC)的路线进入突触后神经元,并且通过CA2 +可渗透的AMPA通道更快地进入。在病理条件下,还存在细胞内Zn2 +结合蛋白,其可以缓冲蛋白神经元Zn2 +流入或释放结合Zn2 +进入胞质溶胶中。文化研究突出显示线粒体的Zn2 +的靶标; Cytosolic Zn2 +可以进入线粒体和诱导效果,包括线粒体膜电位丧失(Delta psi(m)),线粒体溶胀和反应性氧(ROS)产生。虽然短暂(5分钟)在300μmZn2 +存在下的神经元去极化(激活VSCC)导致大量延迟神经变性,但它只会影响急性线粒体功能,提高Zn2 +诱导的线粒体功能障碍对神经元损伤的问题。&段;&段;使用简要高(90 mm)k + / Zn2 +曝光,以模拟神经元去极化和细胞外Zn2 +积累,如可以伴随体内缺血,我们检查了破坏的细胞溶质Zn2 +缓冲和/或Ca2 +的存在的影响,并制作了几个观察结果:1。轻度破坏细胞溶质Zn2 +缓冲 - 单独效果几乎显着增强线粒体Zn2 +积聚和功能障碍(包括由相对较低(10-50 mu m)zn2 +高k +。 2.在Zn2 +暴露期间Ca2 +的存在降低了细胞溶质和线粒体Zn2 +积累,但显着加剧了随之而来的功能障碍。 3.对线粒体的平行效果,缓冲破坏和Ca2 +增强型Zn2 +-诱导的神经变性的存在。 4. Zn2 +螯合在高K + / Zn2 +曝光后衰减ROS生产和神经变性,支持延迟干预的潜在效用。总之,这些数据借给患有细胞溶质Zn2 +缓冲的病理状态的想法,通过VSCC缓慢将Zn2 +加吸入神经元的神经元可能破坏线粒体并诱导神经变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号