...
首页> 外文期刊>Experimental Mechanics >A QuantitativeIn SituSEM Bending Method for Stress Relaxation of Microscale Materials at Room Temperature
【24h】

A QuantitativeIn SituSEM Bending Method for Stress Relaxation of Microscale Materials at Room Temperature

机译:用于在室温下的微观材料应力松弛的定量素弯曲方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Although the time-dependent deformation behaviors of microscale materials have been investigated through experiments with uniaxial loading conditions, the influence of the strain gradient has not been clearly clarified due to the lack of appropriate testing methods. In the current study, to investigate the stress relaxation behavior of microscale single-crystal copper (Cu) at room temperature, a quantitativein situSEM bending experiment is presented using microcantilever specimens of single-crystal Cu. The microcantilever specimens were fabricated using a focused ion beam, and a tungsten (W) layer was deposited onto the front surface to eliminate the error induced by the penetration of the stiff indenter into the metallic specimen. The yield stress of microscale single-crystal Cu is determined to be 445 MPa by a monotonic loading test, showing an apparent size effect, and no strain hardening is observed due to single-slip deformation. On the other hand, the stress relaxation behavior of the microscale single-crystal Cu consists of both a continuous stress relaxation and an abrupt stress decrease due to a strain burst. The activated volume in each dwell stage is obtained by thermodynamics theory and is found to be mainly related to the abrupt stress decrease. The value of the activated volume indicates that the continuous stress drops in the 1st and 2nd dwell stages are attributed to the evolution of dislocation structures by the single slip on system B4, while the dislocation pile-up near the neutral plane leads to the dominance of cross slip on the stress relaxation behavior in the bending plateau. The proposed microcantilever bending experiment is applicable to explore the time-dependent deformation behavior of small-scale materials.
机译:虽然通过具有单轴负载条件的实验研究了微观材料的时间依赖性变形行为,但由于缺乏适当的测试方法,应变梯度的影响尚未清楚地清楚。在目前的研究中,研究在室温下微尺寸单晶铜(Cu)的应力松弛行为,使用单晶Cu的微阵列标本呈现定量素弯曲实验。使用聚焦离子束制造微封装样品,并且将钨(W)层沉积在前表面上,以消除通过僵硬的压紧进入金属样品的渗透引起的误差。通过单调负载试验确定微尺寸单晶Cu的屈服应力是445MPa,显示出表观尺寸效应,并且由于单滑移变形而没有观察到应变硬化。另一方面,微尺寸单晶Cu的应力松弛行为包括连续应力松弛和由于应变爆裂而突然的应力降低。通过热力学理论获得每个停留阶段中的激活体积,发现主要与突然的压力减小相关。激活的体积的值表明,第一和第二停留阶段中的连续应力下降归因于由系统B4上的单滑车脱位结构的演变,而中性平面附近的位错堆积导致主导地位弯曲高原中应力松弛行为的交叉滑移。所提出的微型阵列弯曲实验适用于探讨小规模材料的时间依赖性变形行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号