首页> 外文期刊>European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fuer Pharmazeutische Verfahrenstechnik e.V >Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity
【24h】

Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity

机译:基于模型的熔体粘度的无定形固体分散体热熔挤出工艺的数值模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Graphical abstract Display Omitted Abstract Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ? was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature ( T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs.
机译:图形摘要显示省略了HME流程的摘要仿真是一种有价值的工具,用于增加流程理解和易于扩展的舒适性。然而,所有所需输入参数的实验测定是乏味的,即所讨论的无定形固体分散体(ASD)的熔体流变学。因此,提出了一种简化热熔胶挤出(HME)模拟以形成无定形固体分散体(ASD)的方法的方法。商业1D仿真软件Ludovic?用于使用所有输入变量的完整实验数据集进行(i)模拟,包括使用基于ASDS玻璃化转变的基于模型的熔体粘度数据和聚合物基质的物理性质的熔体流变学和(ii)模拟。与实验性HME结果相比,两种类型的HME计算。评估了物理性质的变化(例如,热容量,密度)和仿真和实验中的HME(停留时间分布,能耗)的若干过程特征。通过使用T g -Viscity相关性通过使用所研究的共混物的玻璃化转变温度(T g)和聚合物基质的熔体粘度来计算基于模型的熔体粘度。测量熔体粘度和基于模型的熔体粘度的结果与少数例外相似,导致类似的HME仿真结果。最后,可以最小化HME模拟前的实验努力,并且该程序通过HME实现了ASDS的合理开发的良好起点。作为模型赋形剂,使用与各种API(卡巴马嗪,二吡酰胺,吲哚美酰胺和银醇(PEG 1500)组合作为增塑剂的乙烯基吡咯烷酮 - 乙酸乙烯酯共聚物(COP)以形成ASDs。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号