首页> 外文期刊>European Journal of Mechanics, B. Fluids >Practical flow-representations for arbitrary singularity-distributions in ship and offshore hydrodynamics, with applications to steady ship waves and wave diffraction-radiation by offshore structures
【24h】

Practical flow-representations for arbitrary singularity-distributions in ship and offshore hydrodynamics, with applications to steady ship waves and wave diffraction-radiation by offshore structures

机译:船舶和海上流体动力学任意奇点分布的实用流动表示,具有海上结构的稳定船波和波衍射 - 辐射的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Diffraction-radiation of regular waves by offshore structures and flows around ships advancing in calm water or in regular waves are commonly analyzed via potential-flow methods based on the Green functions that satisfy the corresponding free-surface boundary conditions. This realistic, practical, and widely-used approach requires evaluation of free-surface flows due to arbitrary (notably constant, linear or quadratic) distributions of singularities (sources and dipoles) over (flat or curved) panels of various shapes (notably rectangles and triangles). Indeed, reliable, efficient and practical methods to evaluate the flows due to arbitrary singularity-distributions over hull-surface panels is a crucial core-element of the Green-function method in ship and offshore hydrodynamics. This core-issue is the object of the study. Free-surface flows due to singularity-distributions over panels (and related Influence coefficients') are ordinarily evaluated via a two-step procedure that involves evaluation of a Green function G and its gradient del G (a Fourier integration) and subsequent integration of G and del G over a panel (a space integration). This common approach involves notorious analytical and numerical complexities related to the complicated singularities of the Green functions in ship and offshore hydrodynamics. An alternative general approach, applicable to generic dispersion relations and arbitrary distributions of singularities, is expounded. This alternative approach is based on a Fourier-Kochin representation of free-surface effects, in which the space integration over hull-panels is performed first and the Fourier integration is performed subsequently. Thus, the Green function and its gradient are not evaluated in this approach. Indeed, this usual first step is bypassed, and the flow due to a singularity distribution is evaluated directly. A major advantage of the FourierKochin method is that the panel-integration is a trivial task as it merely involves integration of an exponential-trigonometric function. A crucial element of the approach expounded in the study is a general analytical decomposition of free-surface effects into waves and a local flow. The waves in this fundamental flow decomposition are expressed as single integrals along the dispersion curves defined by the dispersion relation in the Fourier plane, and the local flow is given by a double Fourier integral that has a smooth integrand dominant within a compact region of the Fourier plane. This analytical flow representation does not involve approximations, i.e. is mathematically exact, as is verified via numerical applications for two main classes of flows in ship and offshore hydrodynamics: ships advancing in calm water, and diffraction-radiation of regular waves by offshore structures. These applications also demonstrate that the general approach expounded in the study provides a practical, remarkably simple, basis that is well suited for accurate and efficient evaluation of flows due to arbitrary singularity-distributions. Indeed, the approach yields a smooth wave and localflow decomposition that avoids the complexities related to the evaluation and subsequent hull-panel integration of the singular wave and local-flow components in the classical Green functions of ship and offshore hydrodynamics.
机译:通过基于满足相应的自由表面边界条件的绿色功能,通常通过潜在的流动方法分析近海结构的常规波的衍射和流动围绕船舶围绕船舶流动。这种现实,实用和广泛使用的方法需要评估由于各种形状的(毫不宽或弯曲的)面板上的任意(尤其是恒定,线性或二次)分布的任意(尤其是恒定,线性或二次)分布(均匀的矩形和弯曲)三角形)。实际上,可靠,有效和实用的方法来评估由于船体表面面板上的任意奇点分布导致的流动是船舶和海上流体动力学中的绿色功能方法的关键核心元素。这个核心问题是该研究的对象。由于面板(和相关影响系数')的奇点分布导致的自由表面流量通常通过两步程序进行评估,涉及评估绿色函数G及其梯度DEL G(傅里叶集成)以及随后的G集成和del g在面板上(空间集成)。这种常见方法涉及与船舶和海上流体动力学中的绿色功能的复杂奇异有关的臭名昭着的分析和数值复杂性。阐述了适用于通用分散关系和奇点任意分布的替代的一般方法。这种替代方法基于自由表面效果的傅里叶kochin表示,其中首先执行船体面板上的空间集成并且随后执行傅立叶集成。因此,未在这种方法中评估绿色功能及其梯度。实际上,绕过这种通常的第一步,直接评估由于奇点分布引起的流量。 Fourierkochin方法的一个主要优点是面板集成是一种微不足道的任务,因为它仅涉及指数三角函数的集成。研究中阐述的方法的一个关键因素是对波浪和局部流动的自由表面效应的一般分析分解。该基本流分解中的波沿着傅立叶平面中的色散关系定义的色散曲线表示为单个积分,并且局部流量由双傅小叶积分给出,该双傅里叶积分在傅立叶的紧凑型区域内具有光滑的积分。飞机。该分析流量表示不涉及近似,即在数学上确切地说,通过船舶和海上流体动力学中的两个主要流动流动的数值应用来验证:船舶在平静的水中推进,近海结构的常规波的衍射辐射。这些应用还表明,研究中阐述的一般方法提供了一种实用,非常简单的基础,非常适合由于任意奇点分布而准确和有效地评估流动。实际上,该方法产生光滑的波和局部流分解,避免了与船舶和近海流体动力学经典绿色功能中的奇异波和局部流量组件的评估和随后的船体集成相关的复杂性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号