...
首页> 外文期刊>European Journal of Applied Mathematics >Derivation and solution of effective medium equations for bulk heterojunction organic solar cells
【24h】

Derivation and solution of effective medium equations for bulk heterojunction organic solar cells

机译:散装异质结有机太阳能电池有效介质方程的推导与解决方法

获取原文
获取原文并翻译 | 示例
           

摘要

A drift-diffusion model for charge transport in an organic bulk heterojunction solar cell, formed by conjoined acceptor and donor materials sandwiched between two electrodes, is formulated. The model accounts for (i) bulk photogeneration of excitons, (ii) exciton drift and recombination, (iii) exciton dissociation (into polarons) on the acceptor-donor interface, (iv) polaron recombination, (v) polaron dissociation into a free electron (in the acceptor) and a hole (in the donor), (vi) electron/hole transport and (vii) electron-hole recombination on the acceptor-donor interface. A finite element method is employed to solve the model in a cell with a highly convoluted acceptor/donor interface. The solutions show that, with physically realistic parameters, and in the power generating regime, the solution varies little on the scale of the micro-structure. This motivates us to homogenise over the micro-structure; a process that yields a far simpler one-dimensional effective medium model on the cell scale. The comparison between the solution of the full model and the effective medium (homogenised) model is very favourable for applied voltages less than the built-in voltage (the power generating regime) but breaks down as the applied voltages increases above it. Furthermore, it is noted that the homogenisation technique provides a systematic way to relate effective medium modelling of bulk heterojunctions [19, 25, 36, 37, 42, 59] to a more fundamental approach that explicitly models the full micro-structure [8, 38, 39, 58] and that it allows the parameters in the effective medium model to be derived in terms of the geometry of the micro-structure. Finally, the effective medium model is used to investigate the effects of modifying the micro-structure geometry, of a device with an interdigitated acceptor/donor interface, on its current-voltage curve.
机译:配制由有机块状异质结太阳能电池中的电荷传输的漂移扩散模型,由连体受体和夹在两个电极之间的供体材料形成。该模型占(i)激子的大量荧光,(ii)激子漂移和重组,(iii)激子解离(进入优势)对受体 - 供体界面,(iv)polaron重组,(v)正弦解离电子(在受体中)和孔(在供体中),(VI)电子/空穴传输和(VII)电子空穴重组在受体 - 供体界面上。采用有限元方法来解决具有高度复杂的受体/供体界面的细胞中的模型。解决方案表明,在物理上现实的参数和发电状态下,溶液在微结构的规模上变化几乎不变。这激励我们在微结构上均匀化;一种在细胞比例上产生远更简单的一维有效媒体模型的过程。完整模型和有效介质(均质)模型的溶液之间的比较非常有利于施加电压小于内置电压(发电状态),但随着所施加的电压增加,施加的电压增加。此外,应注意,均化技术提供了一种系统的载体杂交功能[19,25,36,37,32,59]的有效介质建模,以更为基本的方法,明确地模拟全部微结构[8, 38,39,58]并且它允许在微结构的几何形状方面衍生有效介质模型中的参数。最后,使用有效介质模型来研究改变具有交叉角度的受体/供体界面的微结构几何形状的效果在其电流 - 电压曲线上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号