...
首页> 外文期刊>Environmental Science: Nano >Coupled morphological and structural evolution of delta-MnO2 to alpha-MnO2 through multistage oriented assembly processes: the role of Mn(iii)
【24h】

Coupled morphological and structural evolution of delta-MnO2 to alpha-MnO2 through multistage oriented assembly processes: the role of Mn(iii)

机译:通过多阶段定向组装过程偶联Delta-MnO2至α-MnO2的形态学和结构演化:Mn(III)的作用

获取原文
获取原文并翻译 | 示例

摘要

alpha-MnO2 is a typical tunneled Mn oxide (TMO) that is frequently associated with delta-MnO2 in the environment and exhibits strong adsorption and oxidation activity. The morphology of alpha-MnO2, which is controlled by an oriented attachment (OA) process, is one of the key factors affecting its reactivity. However, the detailed crystal growth process and coupling between morphology and structure of alpha-MnO2 during OA processes remain poorly understood. We propose that the transformation of layer-based delta-MnO2 to tunnel-based alpha-MnO2 occurs via a multistage OA process. In the initial stage, the produced delta-MnO2 nanoflakes are found to spontaneously self-assemble into a nanoribbon with a large number of lattice defects via edge-to-edge OA. The presence of lattice defects promotes the generation of oxygen vacancies, and the Mn(iv) ions in the [MnO6] octahedral layers of delta-MnO2 are reduced to Mn(iii)/Mn(ii). The reduced ions subsequently migrate from the [MnO6] octahedral layers to the interlayers during this process. The hydroxide which acts in coordination with the interlayer Mn(iii)/Mn(ii) and oxygen atoms coordination with adjacent nanoribbons attach to each other driven by hydrogen bonding and form primary nanorods through a face-to-face OA mechanism along the c-axis. Concomitantly, the bonding of [Mn(iii)O-6] octahedra in the interlayer of the nanoribbons with adjacent [MnO6] octahedral layers leads to the fabrication of a new alpha-MnO2 tunnel structure from the original delta-MnO2. These findings provide insights into both the transformation mechanisms of the layer-based to the tunnel-based nanoparticles and methods for the efficient and controlled synthesis of nanomaterials.
机译:α-MnO2是典型的隧道Mn氧化物(TMO),其通常与环境中的Delta-MnO 2相关联,并且具有强烈的吸附和氧化活性。由取向附件(OA)过程控制的α-MnO2的形态是影响其反应性的关键因素之一。然而,OA过程中α-MnO2的形态和结构之间的详细晶体生长过程和耦合仍然明白。我们建议通过多级OA工艺改造基于层的Δ-mnO2到隧道的α-MnO2。在初始阶段,发现所产生的Delta-MnO2纳米薄片被自发地自组装成具有大量通过边缘到边缘OA的晶格缺陷的纳米型。晶格缺陷的存在促进了氧空位的产生,并且[MnO6]八面体层中的Mn(IV)离子层中的Δ-mnO 2中的Mn(IV)离子还原为Mn(III)/ Mn(II)。在该方法期间,还原离子随后从[MnO6]八面体层迁移到中间层。用中间层Mn(III)/ Mn(II)和氧原子配位与相邻纳米杆的氧原子配位用氢键驱动,并通过沿C-通过面对面OA机构形成初级纳米杆的彼此连接。轴。同时,[MnO6]八面体层的纳米骨间层中[Mn(III)O-6] octahedra的粘合导致来自原始Delta-MnO2的新的α-MnO2隧道结构的制造。这些发现提供了对基于隧道的纳米颗粒的转化机制以及用于纳米材料的有效和控制合成的方法的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号