...
首页> 外文期刊>Earth Surface Processes and Landforms: The journal of the British Geomorphological Research Group >Reducing systematic dome errors in digital elevation models through better UAV flight design
【24h】

Reducing systematic dome errors in digital elevation models through better UAV flight design

机译:通过更好的UAV飞行设计减少数字高程模型中的系统圆顶错误

获取原文
获取原文并翻译 | 示例

摘要

It is well established that digital elevation models (DEMs) derived from unmanned aerial vehicle (UAV) images and processed by structure from motion may contain important systematic vertical errors arising from limitations in camera geometry modelling. Even when significant, such 'dome'-shaped errors can often remain unnoticed unless specific checks are conducted. Previous methods used to reduce these errors have involved: the addition of convergent images to supplement traditional vertical datasets, the usage of a higher number of ground control points, precise direct georeferencing techniques (RTK/PPK) or more refined camera pre-calibration. This study confirms that specific UAV flight designs can significantly reduce dome errors, particularly those that have a higher number of tie points connecting distant images, and hence contribute to a strengthened photogrammetric network. A total of 22 flight designs were tested, including vertical, convergent, point of interest (POI), multiscale and mixed imagery. Flights were carried out over a 300 x 70 m(2) flat test field area, where 143 ground points were accurately established. Three different UAVs and two commercial software packages were trialled, totalling 396 different tests. POI flight designs generated the smallest systematic errors. In contrast, vertical flight designs suffered from larger dome errors; unfortunately, a configuration that is ubiquitous and most often used. By using the POI flight design, the accuracy of DEMs will improve without the need to use more ground control or expensive RTK/PPK systems. Over flat terrain, the improvement is especially important in self-calibration projects without (or with just a few) ground control points. Some improvement will also be observed on those projects using camera pre-calibration or with stronger ground control. (c) 2020 John Wiley & Sons, Ltd.
机译:很好地确定,从非人的航空车辆(UAV)图像(UAV)图像和由运动结构处理的数字高度模型(DEM)可以包含从相机几何建模中的限制产生的重要系统垂直误差。即使在显着的情况下,除非进行特定检查,否则这种“圆顶形状的误差”通常会受到注意。以前用于减少这些错误的方法所涉及的:添加收敛图像以补充传统的垂直数据集,使用更高数量的地面控制点,精确的直接地地理转移技术(RTK / PPK)或更精细的摄像机预校准。本研究证实,特定的UAV飞行设计可以显着降低圆顶误差,特别是那些具有连接远距图像的牵引点数量较多的扎带的误差,因此有助于加强摄影测量网络。测试了22种飞行设计,包括垂直,会聚,兴趣点(POI),多尺度和混合图像。航班超过300 x 70米(2)平面测试场区域,其中143个接地点被精确建立。三种不同的无人机和两个商业软件包进行了试验,总计396种不同的测试。 POI飞行设计产生了最小的系统错误。相比之下,垂直飞行设计遭受较大的圆顶误差;不幸的是,一种无处不在,通常使用的配置。通过使用POI飞行设计,DEMS的准确性将改善,而无需使用更多地面控制或昂贵的RTK / PPK系统。在平坦的地形上,改善在自校准项目中尤为重要,没有(或只是几个)地面控制点。在使用摄像机预校准或更强大的地面控制的项目中也将在这些项目中观察到一些改进。 (c)2020 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号