首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Distinguishing Ore Deposit Type and Barren Sedimentary Pyrite Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of Large Data Sets
【24h】

Distinguishing Ore Deposit Type and Barren Sedimentary Pyrite Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of Large Data Sets

机译:用激光烧蚀电感耦合等离子体质谱痕量元素数据和大数据集的统计分析

获取原文
获取原文并翻译 | 示例
           

摘要

Faced with ongoing depletion of near-surface ore deposits, geologists are increasingly required to explore for deep deposits or those lying beneath surface cover. The result is increased drilling costs and a need to maximize the value of the drill hole samples collected. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis of pyrite is one tool that is showing promise in deep exploration. Since the trace element content of pyrite approximates the composition of the fluid from which it precipitated and the crystallization mechanism, the trace element characteristics can be used to predict the type of deposit with which a pyritic sample is associated. This possibility, however, is complicated by overlapping trace element abundances for many deposit types. The solution lies with simultaneous comparison of multiple trace elements through rigorous statistical analysis. Specifically, we used LA-ICP-MS pyrite trace element data and Random Forests, an ensemble machine learning supervised classifier, to distinguish barren sedimentary pyrite and five ore deposit categories: iron oxide copper-gold (IOCG), orogenic Au, porphyry Cu, sedimentary exhalative (SEDEX), and volcanic-hosted massive sulfide (VHMS) deposits. The preferred classifier utilizes in situ Co, Ni, Cu, Zn, As, Mo, Ag, Sb, Te, Tl, and Pb measurements to train the Random Forests. Testing of the Random Forests classifier using additional data from the same deposits and sedimentary basins (test data set) yielded an overall accuracy of 91.4% (94.9% for IOCG, 78.8% for orogenic Au, 81.1% for porphyry Cu, 93.6% for SEDEX, 97.2% for sedimentary pyrite, 91.8% for VHMS). Similarly, testing of the Random Forests classifier using data from deposits and sedimentary basins that did not have analyses in the training data set yielded an overall accuracy of 88.0% (81.4% for orogenic Au, 95.5% for SEDEX, 90.0% for sedimentary pyrite, 73.9% for VHMS; insufficient data was available to perform a blind test on porphyry Cu and IOCG). The performance of the classifier was further improved by instituting criteria (at least 40% of total votes from the Random Forests needed for a conclusive identification) to remove uncertain or inconclusive classifications, increasing the classifier's accuracy to 94.5% for the test data (94.6% for IOCG, 85.8% for orogenic Au, 87.8% for porphyry Cu, 95.4% for SEDEX, 98.5% for sedimentary pyrite, 94.6% for VHMS) and 93.9% for the blind test data (85.5% for orogenic Au, 96.9% for SEDEX, 96.7% for sedimentary pyrite, 84.6% for VHMS).
机译:面对持续的近表面矿床耗尽,地质学家越来越需要探索深沉积物或躺在表面盖下方的那些。结果增加了钻井成本,并且需要最大化收集的钻孔样本的值。胶质石的激光消融电感耦合等离子体质谱(La-ICP-MS)分析是一种在深度勘探中显示出许可的工具。由于铁矿石的痕量元素含量近似于其沉淀的流体的组合物和结晶机理,因此可以使用痕量元件特性来预测沉积物的沉积物,其中脱脂样品相关。然而,这种可能性是由于许多存款类型重叠的微量元素丰满。解决方案在于通过严格的统计分析同时比较多个微量元素。具体而言,我们使用La-ICP-MS黄铁矿痕量元素数据和随机森林,一个集成机器学习监督分类器,以区分贫瘠沉积黄铁矿和五个矿石存款类别:氧化铁铜金(IOCG),orenogenic Au,卟啉铜,沉积呼气(SEDEX)和火山宿主硫化物(VHMS)沉积物。优选的分类器利用原位CO,Ni,Cu,Zn,As,Mo,Ag,Sb,Te,T1和Pb测量,以训练随机林。使用来自相同沉积物和沉积盆(测试数据集)的额外数据的随机森林分类器测试总精度为91.4%(IoCG的94.9%,敌对的敌对的78.8%,对于斑岩Cu的81.1%,Sedex为93.6%。 ,沉积黄铁矿97.2%,VHM的91.8%)。类似地,随机森林分类器使用来自培训数据集中未分析的沉积物和沉积盆地的数据的测试产生了88.0%的总体精度(Orensenic Au的81.4%,Sedex的95.5%,沉积黄铁矿90.0%, VHM的73.9%;数据不足可用于斑岩CU和IOCG对盲目测试)。通过提供标准(来自确认识别所需的随机林的总票数的总票数至少40%)进一步提高了分类器的性能,以消除不确定或不确定的分类,将分类器的准确性提高到测试数据的94.5%(94.6%对于IoCG,敌对的AU,85.8%,卟啉铜的87.8%,Sedex的95.4%,沉积黄铁矿98.5%,vhms的94.6%)和盲试验数据的93.9%(敌对的AU 85.5%,Sedex的85.5%,96.9%。沉积黄铁矿96.7%,VHM的84.6%)。

著录项

  • 来源
  • 作者单位

    Earth Sci Ctr Dept Earth Sci 22 Russell St Toronto ON M5S 3B1 Canada;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Russian Acad Sci Urals Branch Inst Mineral Miass 456301 Chelyabinsk Dis Russia;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Univ Calif Riverside Dept Earth Sci Riverside CA 92521 USA;

    Univ Tasmania CODES Australian Res Council ARC Res Hub Transforming M Private Bag 79 Hobart Tas 7001 Australia;

    Geol Survey South Australia Dept Premier &

    Cabinet 4-101 Crenfell St Adelaide SA 5000 Australia;

    Univ Calif Riverside Dept Earth Sci Riverside CA 92521 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号