首页> 外文期刊>Interpretation >Full-waveform inversion for imaging and geologic interpretation: A deepwater Gulf of Mexico case study
【24h】

Full-waveform inversion for imaging and geologic interpretation: A deepwater Gulf of Mexico case study

机译:用于成像和地质解释的全波形反演:墨西哥案例研究深水海湾

获取原文
获取原文并翻译 | 示例
           

摘要

Full-waveform inversion (FWI) is commonly used in model-building workflows to improve the resolution of the shallow velocity model and thus has a potentially positive impact on the imaging of deeper targets. This type of inversion commonly makes use of first arrivals from the longest offsets. However, signal from smaller offsets and later times can extend the depth range of the FWI-derived velocity model. Waveform inversion methods that use reflections have been shown to provide greater details and accuracy when deriving velocity models for deepwater exploration and production. The derived velocity sometimes provides an improved migrated image useful for interpretation in complex geology and enhances geologic features such as subsalt sediments, faults, and channels. We have used combination of FWI and a wavefield inversion approach known as reconstructed wavefield inversion (RWI) that makes use of diving waves and reflections to derive a velocity model for a deepwater survey off the coast of Veracruz in the Gulf of Mexico. The velocity model we derived from this approach produces an improved image of the target reservoir, and furthermore contains enough geologic details for direct interpretation. We enhanced the resolution of the velocity model further by performing a poststack amplitude inversion with the FWI + RWI derived velocity used as the input low-frequency model. The resulting high-resolution velocity provides an excellent product for detecting shallow gas anomalies, delineating a gas reservoir in an anticline structure as well as a system of deep, sand-filled channels. The inverted velocity also indicates a better correlation with sonic velocity measured from two blind wells than the initial tomography velocity, indicating the benefits of FWI approaches for quantitative reservoir characterization in deepwater environments.
机译:全波形反转(FWI)通常用于模型构建工作流程,以提高浅速度模型的分辨率,从而对更深目标的成像具有潜在的积极影响。这种类型的反演通常利用来自最长偏移的最初到达。然而,来自较小偏移的信号和稍后的时间可以延长FWI导出的速度模型的深度范围。使用反射的波形反演方法已经显示出在推导深水勘探和生产的速度模型时提供更大的细节和准确性。导出的速度有时提供一种有用的改进的迁移图像,可用于复杂地质学中的解释,并增强地质特征,例如沉积物,故障和通道等地质特征。我们使用了FWI和波场反转方法的组合,称为重建的波场反转(RWI),该反演(RWI)利用潜水波和反射来推导墨西哥湾Veracruz海岸的深水调查的速度模型。我们从该方法衍生的速度模型产生了一种改进的目标储层图像,并且还包含足够的地质细节以直接解释。通过使用用作输入低频模型的FWI + RWI导出的速度,通过执行速度幅度反转来增强速度模型的分辨率。由此产生的高分辨率速度提供了用于检测浅气体异常的优异产品,在抗线结构中描绘煤气藏以及深砂通道的系统。倒置速度还表明,与初始断层扫描速度从两个盲孔测量的声速更好地相关,表明FWI在深水环境中定量储层表征的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号