...
首页> 外文期刊>Ionics >Electrochemical performance of Sn-doped cobalt-free Li1.15Ni0.27Mn0.58-xSnxO2 cathode material for Li-ion batteries
【24h】

Electrochemical performance of Sn-doped cobalt-free Li1.15Ni0.27Mn0.58-xSnxO2 cathode material for Li-ion batteries

机译:用于锂离子电池的Sn-掺杂钴Li1.15Ni0.27mn0.58-xsnxO2阴极材料的电化学性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, a series of cobalt-free Sn-doped cathode materials of Li1.15Ni0.27Mn0.58-xSnxO2 are prepared by the solvothermal method for the first time. The structural characterization of the material reveals that all the samples consist of hexagonal layered structural LiMO2 (M = Mn/Ni), monoclinic-layered structural Li2MnO3, and cubic spinel structural LiMn2O4. Moreover, the interplanar spacing of the layered structure increases in the material, and the electrochemical impedance of the material declines by Sn doping. As a result, all Sn-doped samples exhibit better electrochemical performance than pristine Li1.15Ni0.27Mn0.58O2 materials. Among them, Li1.15Ni0.27Mn0.56Sn0.02O2 delivers comprehensively improved electrochemical performance. The initial coulombic efficiency of the Li1.15Ni0.27Mn0.56Sn0.02O2 sample is 84.4%, which is nearly 10% higher than the pristine material, and Li1.15Ni0.27Mn0.56Sn0.02O2 exhibits an initial discharge specific capacity of 260.8 mAh/g at a current density of 0.1 C, and the capacity retention after first 100 cycles at 1 C reached 94.67%. Rate capability of Li1.15Ni0.27Mn0.58-xSnxO2 is significantly improved by Sn doping. The specific discharge capacity of the Li1.15Ni0.27Mn0.56Sn0.02O2 sample at 5 C is two times higher than that of Li1.15Ni0.27Mn0.58O2. Moreover, the Li1.15Ni0.27Mn0.56Sn0.02O2 material can still maintain a discharge capacity of 220 mAh/g when the current density returns to 0.1 C after a large current density cycling process. These results show that the proper amount of Sn doping can effectively improve the electrochemical performance of Li1.15Ni0.27Mn0.58O2, due to the fact that Sn ions have larger ionic radii than the transition metal (Mn/Ni) ions and Sn can partially replace the transition metal element ions in the layered structure, thereby expanding the lithium ion diffusion channel and inhibiting instability of the material structure during the cycle. However, an excessive amount of Sn (x > 0.03) generates a Li2SnO3 impurity in the material, resulting in deterioration of material properties.
机译:在该研究中,首次通过溶剂热法制备Li1.15Ni0.27mN0.58-XSNXO2的一系列无钴的Sn掺杂阴极材料。材料的结构表征揭示所有样品由六边形层状结构LiMO 2(M = Mn / Ni),单斜晶层结构Li2mNO3和立方尖晶石结构LiMn2O4组成。此外,层状结构的平面间距在材料中增加,并且通过Sn掺杂的材料的电化学阻抗下降。结果,所有SN掺杂样品都具有比原始LI1.15NI0.27MN0.58O2材料更好的电化学性能。其中,LI1.15NI0.27MN0.56SN0.02O2提供全面提高的电化学性能。 Li1.15Ni0.27Mn0.56Sn0.02O2样品的初始库仑效率为84.4%,比原始材料高近10%,Li1.15Ni0.27mn0.56sn0.02O2呈现出260.8 mah的初始排放特定容量/ g以0.1℃的电流密度为0.1℃,并在1℃下循环后的容量保持达到94.67%。 LI1.15NI0.27MN0.58-XSNXO2的速率能力通过SN掺杂显着提高。 5℃下的Li1.15Ni0.27mN0.56sn0.02O2样品的特定放电能力比Li1.15Ni0.27mn0.58O2高的两倍。此外,Li1.15Ni0.27mn0.56sn0.02O2材料仍然可以保持220mah / g的放电容量,当电流密度循环过程后电流密度返回0.1c。这些结果表明,由于SN离子具有比过渡金属(Mn / Ni)离子(Mn / Ni)离子(Mn / Ni)离子和Sn可以部分地,可以有效地提高Li1.15Ni0.27mn0.58O2的电化学性能。更换层状结构中的过渡金属元件离子,从而延伸锂离子扩散通道并在循环期间抑制材料结构的不稳定性。然而,过量的Sn(X> 0.03)在材料中产生Li2SNO 3杂质,导致材料性质的劣化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号