...
首页> 外文期刊>International Journal of Solids and Structures >Computationally-efficient modeling of inelastic single crystal responses via anisotropic yield surfaces: Applications to shape memory alloys
【24h】

Computationally-efficient modeling of inelastic single crystal responses via anisotropic yield surfaces: Applications to shape memory alloys

机译:各向异性屈服表面的计算上高效建模:塑造记忆合金的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Phenomenological constitutive models of inelastic responses based on the methods of classical plasticity provide several advantages, especially in terms of computational efficiency. For this reason, they are attractive for the analysis of complex boundary value problems comprising large computational domains. However, for the analysis of problems dominated by single crystal behavior (e.g., inclusion, granular interaction problems or inter-granular fracture), such approaches are often limited by the symmetry assumptions inherent in the stress invariants used to form yield-type criteria. On the other hand, the high computational effort associated with micro-mechanical or crystal plasticity-type models usually prevents their use in large structural simulations, multi-scale analyses, or design and property optimization computations. The goal of the present work is to establish a modeling strategy that captures micro-scale single-crystalline sma responses with sufficient fidelity at the computational cost of a phenomenological macro-scale model. Its central idea is to employ an anisotropic transformation yield criterion with sufficiently rich symmetry class which can directly be adopted from the literature on plasticity theory at the single crystal level. This approach is conceptually fundamentally different from the common use of anisotropic yield functions to capture tension-compression asymmetry and texture-induced anisotropy in poly-crystalline SMAs. In our model, the required anisotropy parameters are calibrated either from experimental data for single crystal responses, theoretical considerations or micro-scale computations. The model thus efficiently predicts single crystal behaviors and can be applied to the analysis of complex boundary value problems. In this work we consider the application of this approach to the modeling of shape memory alloys (SMAs), though its potential utility is much broader. Example analyses of SMA single crystals that include non-transf
机译:基于古典塑性方法的非弹性响应的现象学基本型模型提供了几种优点,特别是在计算效率方面。因此,它们对于分析包括大型计算域的复杂边界值问题是有吸引力的。然而,为了分析由单晶行为主导的问题(例如,包含粒状相互作用或颗粒间骨折),这种方法通常受到用于形成产量类型标准的应力不变的对称假设的限制。另一方面,与微机械或晶体塑性型模型相关的高计算工作通常可以防止它们在大型结构模拟,多尺度分析或设计和属性优化计算中使用。本作工作的目标是建立一种建模策略,以现象学宏观规模模型的计算成本,以足够的保真度捕获微尺度单晶SMA响应。其中心思想是采用具有足够丰富的对称性级别的各向异性转化屈服标准,其可以直接从单晶水平上的可塑性理论上的文献中采用。这种方法在概念上从根本上与各向异性产量函数的常见常见不同,以捕获张力 - 压缩不对称和纹理诱导的聚结晶SMA中的各向异性。在我们的模型中,所需的各向异性参数是根据单晶响应,理论考虑或微尺度计算的实验数据校准的。因此,该模型有效地预测了单晶行为,并且可以应用于复杂边界值问题的分析。在这项工作中,我们考虑这种方法在形状记忆合金(SMA)的建模中,尽管其潜在的效用更广泛。 SMA单晶的示例分析,包括非Transf

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号