...
首页> 外文期刊>International Journal of Thermal Sciences >Behavior of pool boiling heat transfer and critical heat flux on high aspect-ratio microchannels
【24h】

Behavior of pool boiling heat transfer and critical heat flux on high aspect-ratio microchannels

机译:高纵横比微通道上池沸腾传热和临界热通量的行为

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractWe conducted pool-boiling experiments and investigated the physical mechanism of boiling heat transfer and critical heat flux (CHF) on heating surfaces with top-opened rectangular microchannels. Through capillary wicking experiments for the boiling samples, it was revealed that, as the microchannel heights increase, the liquid-wicking capability is enhanced significantly for the same capillary pressure gradient, i.e., for the same channel width. This result can be explained by considering the balance between the capillary-pressure potential and the viscous friction by the channel walls. The pool boiling experiments showed that the higher aspect-ratio channel sample has a higher CHF and boiling heat transfer coefficient (BHTC), and it provides evidence that on the microchannel surfaces, additional liquid supply to the dry spot that is formed on the boiling surface by capillary wicking can lead to an enhancement of CHF and BHTC under pool boiling conditions. Expressions for the liquid mass-flow rate and the liquid-occupied region by capillary wicking were derived by the mathematical procedure with a one-dimensional, steady-state fluid momentum equation for liquid flow inside a single microchannel, and the parameters increased monotonically with an increase in channel height. Through numerical analysis, a simple relationship between the average boiling surface temperature (Ts,avg), the surface heat flux (qs), and the dry-spot diameter (Ddry) was derived asTs,avgDdry2qs. Hence, an exact solution to predict CHF on the boiling surface with microchannels was obtained, and it supports the strong relationship between the CHF and the capillary wicking capability on a boiling surface.Highlights?Pool boiling experiments were conducted with rectangular microchannel surfaces.?Microchannel surfaces show significant enhancements of critical heat flux.<
机译:<![CDATA [ 抽象 我们进行了泳池沸腾实验并调查了沸腾传热和临界热通量(CHF)的物理机制采用顶部打开矩形微通道的加热表面。通过毛细管芯吸样品的沸腾试验,显示,随着微通道高度的增加,对于相同的毛细管压梯度,即相同的沟道宽度,液体吸管能力显着增强。可以通过考虑毛细管压力电位与通道壁的粘性摩擦之间的平衡来解释该结果。池沸腾实验表明,较高的纵横比通道样品具有更高的CHF和沸腾的传热系数(BHTC),并且提供了在微通道表面上的证据,在沸腾表面上形成的干燥点的额外液体供应通过毛细管芯吸可导致CHF和BHTC的增强在池中沸腾条件下。通过具有一维的稳态流体动量方程的数学过程来导出用于液体质量流量和毛细管芯片的液体占用区域的表达,用于单一微型通道内的液体流动,并且参数随着一个频道高度增加。通过数值分析,平均沸点温度之间的简单关系( t s a v g ),表面热通量( q s )和干斑直径( d < MML:MI> D R Y )派生为 t s a v g α d d R Y 2 q s 。因此,获得了预测沸点与微通道的沸点上CHF的精确解决方案,并且它支持CHF与沸腾表面上的毛细管芯吸能之间的良好关系。 亮点 池沸点实验用矩形微通道表面进行。 MicroChannel曲面显示出显着的增强功能临界热通量。 <

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号