...
首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >A study of rock pillar behaviors in laboratory and in-situ scales using combined finite-discrete element method models
【24h】

A study of rock pillar behaviors in laboratory and in-situ scales using combined finite-discrete element method models

机译:利用组合有限离散元件模型研究实验室和原位秤的岩石柱行为研究

获取原文
获取原文并翻译 | 示例
           

摘要

With advances in numerical modeling techniques, the combined finite-discrete-element-method (FDEM) is increasingly being used to study the mechanical behavior and failure processes of brittle geomaterials under various loading conditions. The progressive rock fracturing process from initial formation to subsequent propagation can be simulated explicitly in FDEM models where the corresponding mechanical response in the simulations is governed by a set of microparameters. Previous studies have calibrated these microparameters by comparing the macroscopic results of simulated laboratory tests with those obtained in physical tests or by comparing larger-scale model results to observed field performance of engineered structures. Very few studies, however, have calibrated models at both the laboratory and field scales, and there is, therefore, a lack of understanding of the scale-dependency of FDEM material parameter inputs. To explore this scale issue, this study presents a series of calibrated laboratory-scale models of Creighton granite. Next, models of 8 m-wide pillars with different width-to-height ratios are calibrated against the strength trends predicted by empirical relationships. In the context of the pillar models developed, the effects of each input parameter on the macroscopic pillar stress-strain behavior are presented, considering the yield stress, peak strength, and post-yield behaviors. Ultimately, it is found that while the same set of input parameters can be used to reproduce both the expected laboratory specimen behavior and the expected pillar peak strengths at different width-to-height ratios, the post-yield behavior of the pillar models obtained using the laboratory parameters is much more brittle than would be expected in reality.
机译:随着数值建模技术的进步,越来越多地用于研究各种装载条件下脆性地质材料的机械行为和失效过程的组合的有限分离线元件(FDEM)。可以在模拟模拟中的相应机械响应的FDEM模型中明确地模拟从初始形成到随后的传播的渐进式岩石压裂过程。通过将模拟实验室测试的宏观结果与物理测试中获得的那些或通过比较了更大规模模型结果观察了工程结构的现场性能,通过比较模拟实验室测试的宏观结果来校准这些微丙酰胺表。然而,很少有研究在实验室和现场尺度上具有校准模型,因此,对FDEM材料参数输入的尺度依赖性缺乏了解。为了探索这种规模问题,本研究提出了一系列Creighton Granite的校准实验室规模模型。接下来,以不同宽度到高度比率的8宽支柱的模型校准通过经验关系预测的强度趋势。在开发的支柱模型的背景下,考虑到屈服应力,峰强度和产量后行为来提出每个输入参数对宏观柱应力应变行为的影响。最终发现,虽然相同的输入参数集合可用于再现预期的实验室样本行为和不同宽度到高度比率的预期柱峰强度,但使用的支柱模型的产量行为实验室参数比现实中的预期更脆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号