首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Anisotropic microplane constitutive model for coupling creep and damage in layered geomaterials such as gas or oil shale
【24h】

Anisotropic microplane constitutive model for coupling creep and damage in layered geomaterials such as gas or oil shale

机译:用于耦合蠕变和层状地磁损伤的各向异性微板组型模型,如气体或油页岩

获取原文
获取原文并翻译 | 示例
           

摘要

An anisotropic constitutive model for coupling creep with damage of shale and other anisotropic geomaterials under complex loading paths is formulated. The material damage is described by a previously developed spherocylindrical microplane model, which can simulate not only the stress-induced incremental anisotropy but also the inherent material anisotropy. Like material damage, the creep must be expected to be anisotropic as well. The creep responses of shale with inherent transverse isotropy are first separately constructed for the loading by compressive principal stress oriented either (i) parallel or (ii) normal to the bedding planes, and (iii) for shear stress along the bedding planes produced by the differences of the bedding plane inclination angle. This leads to three elementary linear creep models, which are mathematically formulated based on a continuous retardation spectrum of generalized Kelvin chain. These three creep responses are combined with the spherocylindrical microplane model. This leads to a general anisotropic constitutive creep model for arbitrary three-dimensional applied loading and arbitrary loading path. To achieve high numerical efficiency, a fully explicit numerical algorithm for the microplane constitutive model and finite element analysis is then formulated. Short-time (two-day) creep tests of shale cylinders with multilevel deviatoric stress and various inclinations of bedding planes relative to the axial compressive load are conducted. The numerical simulations by the microplane model are compared with the results of laboratory creep tests. The comparisons demonstrate a linear dependence of creep on the stress and verify the applicability of the anisotropic microplane model for creep and damage. Extensions to multi-year time ranges are in principle possible but will necessitate further calibration and verification.
机译:配制了用于在复杂的负载载路径下耦合蠕变和其他各向异性地质材料抗蠕变的各向异性本构体模型。通过先前开发的球圆形微层模型描述了材料损伤,其不仅可以模拟应力引起的增量各向异性,而且可以模拟固有材料各向异性。像物质损伤一样,必须预期蠕变是各向异性的。具有固有横向各向同性的页岩的蠕变响应首先通过由(i)的压缩主应力为定向的压缩主应力或(ii)正常地构造,沿着床上用品的(iii)沿着由所产生的床上用品剪切应力进行剪切应力床上用品倾斜角的差异。这导致三种基本的线性蠕变模型,其在数学上基于广义开菜链的连续延迟谱。这三个蠕变响应与球筒子吲哚微薄模型相结合。这导致了任意三维施加载荷和任意加载路径的一般各向异性组织蠕变模型。为了实现高数值效率,然后制定了一种全显式数值算法和用于微板本构模型和有限元分析的分析。对具有多级偏离应力的页岩缸的短时间(两天)蠕变试验和相对于轴向压缩载荷的床上用品的各种倾斜度。将微型模型的数值模拟与实验室蠕变试验的结果进行比较。比较展示了蠕变对应力的线性依赖性,并验证了各向异性微板模型对蠕变和损坏的适用性。对于多年时间范围的扩展原则上是可能的,但需要进一步校准和验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号