首页> 外文期刊>International Journal of Pressure Vessels and Piping >Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures
【24h】

Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures

机译:输送天然气及二氧化碳混合物管道中动态断裂繁殖的流体结构相互作用建模

获取原文
获取原文并翻译 | 示例
           

摘要

As part of current design standards, the Battelle Two-Curve Model (BTCM) is still widely used to predict and secure ductile crack arrest in gas transmission pipelines. For modern linepipe steels and rich natural gases or CO2 mixtures, the BTCM might lead to incorrect predictions. On the one hand, it suffers from the insufficient description of the individual physical processes in the pipe material and fluid itself. Furthermore, the model does not account for fluid-structure-interaction (FSI) effects dining simultaneous running-ductile fracture (RDF) and mixture decompression. Numerical FSI models allow for a more sophisticated, coupled analysis of the driving forces for the failure of pipelines. This paper deals with the development of an FSI model for the coupled prediction of 3D pressure profiles acting on the inner pipe wall during crack propagation. The coupled Euler-Lagrange (CEL) method is used to link the fluid and structure models. In a Lagrange formulation, the modified Bai-Wierzbicki (MBW) model describes the plastic deformation and ductile fracture as a function of the underlying stress/strain conditions. The fluid behavior is calculated in a 3D model space by Euler equations and the GERG-2008 reference equation of state (EOS). The coupled CEL model is used to predict the RDF in small-diameter pipe sections for different fluid mixtures. The calculated 3D pressure distributions ahead and behind the running crack tip (CT) significantly differ in axial and circumferential directions depending on the mixture composition. The predicted FSI between the pipe wall and fluid decompression in 3D CEL/FSI model provides reliable knowledge about the pressure loading of the pipeline during RDF.
机译:作为当前设计标准的一部分,Battelle双曲线模型(BTCM)仍被广泛用于预测气体传输管道中的延展性裂纹停滞。对于现代线管钢和丰富的天然气或CO2混合物,BTCM可能会导致预测不正确。一方面,它遭受了管材和流体本身的个体物理过程的描述不足。此外,该模型不考虑流体 - 结构 - 相互作用(FSI)效应用餐同时运行 - 延展性裂缝(RDF)和混合减压。数值FSI模型允许更复杂的,对管道故障的驱动力进行更复杂的耦合分析。本文涉及开发FSI模型,用于耦合在裂纹传播期间作用在内管壁上的3D压力型材的耦合预测。耦合的Euler-Lagrange(CEL)方法用于将流体和结构模型连接。在拉格朗日配方中,改进的Bai-Wierzbicki(MBW)模型描述了作为潜在应力/应变条件的函数的塑性变形和延展性裂缝。通过欧拉方程和状态(EOS)的Gerg-2008参考方程,在3D模型空间中计算流体行为。耦合的CEL模型用于预测用于不同流体混合物的小直径管部分中的RDF。根据混合物组合物,在运行裂纹尖端(CT)前后和后面的计算的3D压力分布在轴向和圆周方向上显着不同。在3D CEL / FSI模型中的管壁和流体解压缩之间的预测的FSI提供了关于RDF期间管道压力负荷的可靠知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号