...
首页> 外文期刊>International Journal of Plasticity >Deformation of lamellar FCC-B2 nanostructures containing Kurdjumov-Sachs interfaces: Relation between interfacial structure and plasticity
【24h】

Deformation of lamellar FCC-B2 nanostructures containing Kurdjumov-Sachs interfaces: Relation between interfacial structure and plasticity

机译:含有Kurdjumov-Sachs界面的层状FCC-B2纳米结构的变形:界面结构与可塑性之间的关系

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Dual-phase lamellar microstructures containing alternating regions of plastically soft and hard phases are known to produce alloys with exceptional combination of strength and ductility. Here, by coupling high-resolution transmission electron microscopy and molecular dynamics (MD) simulations, we have investigated the deformation mechanisms prevalent in lamellar microstructures with soft fcc and harder bcc-ordered intermetallic B2 whose interfaces follow the Kurdjumov-Sachs (KS) orientation relationship. We have identified two key structural features at such an fcc/B2 KS interface. The mating KS-fcc (111) interfacial plane contains periodically arranged 1/6 < 112 >(fcc) predominantly screw partial dislocations that are separated by extended dislocation "core-overlap" regions. The KS interface also contained steps and ledges with several steps exhibiting fcc-B2 lattice continuity between the {111}(fcc) and {011}(B2). The effects of such interfaces on the uniaxial deformation of fcc-B2 multicrystal nanostructures, as a function of lamellae thickness, were studied using MD simulations. We observed that the screw-like interfacial partials facilitated the KS interfacial sliding and strain accumulation at the interphase interfaces, and reduced the yield strength of the composite material compared to a pure-fcc reference material. Deformation character depends on lamellae thickness. Thin B2 lamellae (similar to 4 angstrom) sheared via twinning to drastically lowered flow stress such that the flow-strength was comparable to the pure fcc constituent phase. In contrast, thicker B2 lamellae (similar to 12 angstrom) sheared via a slip-transfer mechanism, which allowed the fcc-B2 composite to maintain its flow-strength. Thus, the atomic structure of fcc/B2 KS interfaces was directly linked to dominant operative plastic deformation mechanisms.
机译:已知含有塑性柔软和硬相的交替区域的双相块状微结构,用于产生具有优异的强度和延展性的特殊组合的合金。这里,通过耦合高分辨率透射电子显微镜和分子动力学(MD)模拟,我们研究了具有软FCC的层状微观结构中普遍存在的变形机制,较硬的BCC有序的金属间B2,其接口遵循Kurdjumov-Sachs(KS)方向关系。我们已经确定了这种FCC / B2 KS接口的两个关键结构特征。配合KS-FCC(111)界面平面含有周期性排列的1/6 <112>(FCC),其主要是螺钉部分位错,所述螺钉部分位错是由延伸的位错“核 - 重叠”区域分开的。 KS接口还包含具有若干步骤的步骤和凸缘,其展示{111}(FCC)和{011}(B2)之间的FCC-B2晶格连续性。使用MD仿真研究了这种界面对FCC-B2多晶纳米结构的单轴变形的影响,作为薄片厚度的函数。我们观察到螺旋状界面部分促进了与纯-FCC参考材料相比的邻相界面处的KS界面滑动和应变积累,并降低了复合材料的屈服强度。变形特征取决于薄片厚度。通过孪晶剪切薄B2薄片(类似于4埃)以急剧降低的流量应力,使得流量 - 强度与纯FCC成分相媲美。相反,通过滑动转移机构剪切的厚度B2薄片(类似于12埃),其允许FCC-B2复合物保持其流量强度。因此,FCC / B2KS界面的原子结构与显性术塑性变形机构直接连接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号