首页> 外文期刊>International Journal of Plasticity >Understanding the complete loss of uniform plastic deformation of some ultrafine-grained metallic materials in tensile straining
【24h】

Understanding the complete loss of uniform plastic deformation of some ultrafine-grained metallic materials in tensile straining

机译:了解拉伸应变中一些超细粒化金属材料的完全损失均匀塑性变形

获取原文
获取原文并翻译 | 示例
           

摘要

Reducing the grain size ranges among the most powerful methods to manage both high strength and high toughness of metallic structural materials. However, below certain grain sizes (often around 1 mu m) some metallic materials lose most of their tensile ductility. In uniaxial tensile straining and related tensile forming processes, necking is then initiated immediately after first yielding. This in turn leads to a complete loss of uniform plastic deformation, a severe drawback in the use of these materials. Here, a new macromechanical approach in combination with micromechanical considerations is used to explain this long-standing riddle in materials science and engineering. The approach is based on the yield point phenomenon and the stress state that necessarily develops at the Liiders fronts. Using a simple new material model and a novel strain hardening law, it is clearly shown, that below a critical grain size the necessary nominal stress to spread out a Liiders band may be higher than the tensile strength. This invariably leads to a special form of plastic instability and the complete loss of uniform plastic deformation. Micro- and macromechanical considerations, experiments, analytical calculations and extensive finite element calculations are combined in this comprehensive study and fit together well. Furthermore, many features of the yield point phenomenon (the upper and lower yield strength, the spreading out of simple and complex Luders bands, the stress fluctuations within the Liiders region) and the Hall-Petch relationship may now be understood in a new consistent way.
机译:减少最强大的方法之间的晶粒尺寸范围,以管理金属结构材料的高强度和高韧性。然而,低于某些晶粒尺寸(通常约1亩)一些金属材料失去了大部分拉伸延展性。在单轴拉伸和相关的拉伸成型过程中,然后在首次产生后立即引发缩颈。这反过来导致完全损失均匀的塑性变形,在使用这些材料时具有严重缺点。这里,新的大型机械方法与微机械考虑结合使用用于解释材料科学和工程中的这种长期谜语。该方法基于屈服点现象和必然在莱伯前面发展的应力状态。使用简单的新材料模型和新的应变硬化定律,清楚地示出,下面低于临界晶粒尺寸,所以要散布莱默频带的必要标称应力可能高于拉伸强度。这总是导致一种特殊的塑料不稳定形式,完全损失均匀的塑性变形。微球的考虑,实验,分析计算和广泛的有限元计算在这一综合研究中结合在一起并合适。此外,屈服点现象的许多特征(上下屈服强度,简单且复杂的铅频带的扩散,Liiders区域内的应力波动)现在可以以一种新的一致方式理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号