...
首页> 外文期刊>International Journal of Plasticity >Consistent determination of geometrically necessary dislocation density from simulations and experiments
【24h】

Consistent determination of geometrically necessary dislocation density from simulations and experiments

机译:一致地确定从模拟和实验中的几何必要位错密度

获取原文
获取原文并翻译 | 示例
           

摘要

The use of Nye's dislocation tensor for calculating the density of geometrically necessary dislocations (GND) is widely adopted in the study of plastically deformed materials. The "curl" operation involved in finding the Nye tensor, while conceptually straightforward has been marred with inconsistencies and several different definitions are in use. For the three most common definitions, we show that their consistent application leads to the same result. To eliminate frequently encountered confusion, a summary of expressions for Nye's tensor in terms of elastic and plastic deformation gradient, and for both small and large deformations, is presented. A further question when estimating GND density concerns the optimization technique used to solve the under-determined set of equations linking Nye's tensor and GND density. A systematic comparison of the densities obtained by two widely used techniques, L-1 and L-2 minimisation, shows that both methods yield remarkably similar total GND densities. Thus the mathematically simpler, L-2, may be preferred over L-1 except when information about the distribution of densities on specific slip systems is required. To illustrate this, we compare experimentally measured lattice distortions beneath nano-indents in pure tungsten, probed using 3D-resolved synchrotron X-ray micro-diffraction, with those predicted by 3D strain-gradient crystal plasticity finite element calculations. The results are in good agreement and show that the volumetric component of the elastic strain field has a surprisingly small effect on the determined Nye tensor. This is important for experimental techniques, such as micro-beam Laue measurements and HR-EBSD, where only the deviatoric strain component is measured.
机译:在塑性变形材料的研究中广泛采用了用于计算几何必要脱位(GND)密度的NYE的脱位张量。涉及找到NYE Tensor的“卷曲”操作,而概念性简单的是与不一致的,并且使用了几种不同的定义。对于三个最常见的定义,我们表明它们的一致应用程序导致相同的结果。为了消除经常遇到的混淆,提出了在弹性和塑性变形梯度方面对NYE张量的表达式的摘要,以及小而大的变形。当估计GND密度时涉及用于解决连接NYE的张量和GND密度的所确定的型方程集的优化技术时,进一步的问题。通过两种广泛使用的技术,L-1和L-2最小化获得的密度的系统比较表明,两种方法产生显着相似的总GND密度。因此,除了需要关于特定滑动系统上的密度分布的信息之外,数学上更简单的L-2可能是优选的。为了说明这一点,我们比较纯钨中的纳米腺体下方的实验测量的格子畸变,探测使用3D分辨同步曲线微衍射探测,其中3D应变梯度晶体塑性有限元计算预测的那些。结果非常一致,表明弹性应变场的体积分量对所确定的NYE张量具有令人惊讶的小效果。这对于实验技术很重要,例如微光束借款测量和HR-EBSD,其中仅测量偏离有毒应变分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号