首页> 外文期刊>International Journal of Plasticity >Unraveling the dislocation-precipitate interactions in high-entropy alloys
【24h】

Unraveling the dislocation-precipitate interactions in high-entropy alloys

机译:解开高熵合金中的脱位沉淀的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

The precipitates play a significant role in not only enhancing the strength, but also maintaining the high toughness in alloys. However, the interactions of the nanoscale precipitates with dislocations in the high entropy alloys (HEAs) are difficult to observe directly by in-situ TEM experiments due to the limits of the resolution and time. Here, using atomic simulations we report the synergistic strengthening of the coherent precipitate and atomic-scale lattice distortion in the HEAs at cryogenic/elevated temperatures. The effects of temperature, chemical disorder, precipitate spacing, precipitate size, elemental segregation, and dislocation-cutting number on the critical stress for the dislocation to overcome a row of precipitates are studied. A random stacking fault energy landscape along the slip plane, the lattice distortion at different temperatures, and the interface/surface energy at various crystallographic orientations are obtained. Compared with the traditional metals and alloys, HEAs have the severe atomic-scale lattice distortions to generate the local high tensile/compressive stress fields. This complex stress causes the dislocation line to bend, and thus improves the dislocation slip resistance, resulting in the strong solid-solution strengthening. The stacking fault strengthening induced by the obvious difference of the stacking fault energies between the HEA matrix and precipitate (within the inner of the HEA matrix), and the formation of the antiphase domain boundary contribute to the high strength. The precipitate embedded by the solute atoms produces the strong lattice distortion to enhance the dislocation slip resistance at high temperatures. Hence, the current results provide the mechanistic insight into the phenomenon that the coherent precipitate combined with the severe atomic-scale lattice distortion can enhance the strength at cryogenic/elevated temperatures to further broaden the scope of applications of advanced HEAs.
机译:沉淀物在不仅提高强度方面不仅发挥了重要作用,而且在不仅提高强度,而且在其上保持合金的高韧性。然而,纳米级沉淀物与高熵合金(HEAS)中的脱位的相互作用难以通过原位TEM实验直接观察由于分辨率和时间的限制。这里,使用原子模拟我们报告了在低温/升高的温度下批发的相干沉淀物和原子级格变形的协同强度。研究了温度,化学障碍,沉淀间距,沉淀尺寸,元素偏析和脱位 - 切割数对脱位的临界应力的影响,以克服一排沉淀物。获得沿着滑移平面的随机堆叠故障能量景观,在不同温度下的晶格变形以及各种晶形取向处的界面/表面能。与传统金属和合金相比,HEA具有严重的原子尺度晶格扭曲,以产生局部高拉伸/压缩应力场。这种复杂的应力导致位错线弯曲,从而提高了脱位滑抗性,导致强固溶体强化。通过堆叠故障能量的堆叠故障能量的堆叠故障强化引起的堆叠故障强化(在Hea矩阵的内部内),并且反相域边界的形成有助于高强度。由溶质原子嵌入的沉淀产生强的晶格变形,以提高高温下的位错滑抗性。因此,目前的结果提供了对现象的机械洞察力,即相干沉淀与严重的原子级晶格畸变联合的现象可以增强低温/升高的温度下的强度,以进一步拓宽先进的HEAS的应用范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号