首页> 外文期刊>International Journal of Mechanical Sciences >Rotating electroosmotic flow of two-layer fluids through a microparallel channel
【24h】

Rotating electroosmotic flow of two-layer fluids through a microparallel channel

机译:通过微通道旋转双层流体的电渗流动

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, rotating electroosmotic flow of two immiscible fluids in a microparallel channel is investigated. The electric double layer (EDL) potential distribution is considered by using linear Poisson-Boltzmann (P-B) equation. Based upon the analytical charge density distribution, an analytical solution of flow velocity can be obtained by solving the modified Navier-Stokes (N-S) equation in the rotating frame. Besides, the equilibrium condition of stress, including shear stress and Maxwell stress, is taken into account as boundary conditions at the interface to analyze the distribution of the two-layer fluids velocity. It is found that, due to the rotational effect of the microchannel, the Coriolis force can generate a (secondary) transverse flow in horizontal direction perpendicular to the mainstream direction and the velocity amplitude of two-layer fluids has a reduced flow along the mainstream direction. In addition, the results indicate that double fluid velocity distribution is strongly influenced by several non-dimensional parameters, such as the dielectric constant ratio epsilon, density ratio rho, viscosity ratio mu of the two layer fluids, rotating angular velocity 6), interface zeta potential difference Delta phi*, interface charge density jump Q, the normalized thickness of two layer Newtonian fluids h*(1), h*(2) and electrokinetic width K-1, K-2. Smaller mu and larger epsilon, Delta phi* lead to larger velocity amplitude for lower fluid (noted as fluid II), but an opposite trend can be found for upper fluid (namely fluid I). The increase of Q or decrease of rho leads to the increases of velocity amplitude for both fluid I and fluid II. Furthermore, interestingly, we observe that the mainstream speed at the interface does not depend on the interface zeta potential difference Delta phi*, the dielectric constant ratio a and electrokinetic width K-2 of fluid II when the depths of h*(1) and h*(2) are identical. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在该研究中,研究了在微观平行通道中旋转两个不混溶的流体的电渗流。通过使用线性泊松 - Boltzmann(P-B)方程,考虑电双层(EDL)电位分布。基于分析电荷密度分布,可以通过在旋转框架中求解改性的Navier-Sokes(N-S)方程来获得流速的分析溶液。此外,作为界面处的边界条件考虑了应力的平衡条件,包括剪切应力和麦克斯韦应力,以分析双层流体速度的分布。结果发现,由于微通道的旋转效果,科里奥利力可以在垂直于主流方向上产生(次级)横向流动,并且双层流体的速度幅度沿主流方向具有减小的流动。此外,结果表明,双流体速度分布受几个非尺寸参数的强烈影响,例如介电常数比ε,密度比Rho,粘度比μ的两层流体,旋转角速度6),旋转角速度6),界面Zeta电位差ΔPHI*,接口电荷密度跳跃Q,常规厚度的两层牛顿流体H *(1),H *(2)和电动宽k-1,k-2。较小的mu和较大的ε,delta phi *导致下流体的较大速度幅度(注意为流体II),但可以找到相反的趋势,用于上流体(即流体i)。 Q或rho的减少增加导致流体I和流体II的速度幅度的增加。此外,有趣的是,我们观察到界面处的主流速度不依赖于Zeta电位差Delta PHI *,当H *(1)深度的流体II的介电常数A和电动宽度K-2和H *(2)是相同的。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号