...
首页> 外文期刊>International Journal of Mechanical Sciences >Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory
【24h】

Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory

机译:基于非识别应变梯度弹性理论的轴向装载功能梯度多层石墨烯血小板增强纳米叶片的非线性不稳定性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

With the aid of a more comprehensive size-dependent continuum elasticity theory, the nonlinear instability of functionally graded multilayer graphene platelet-reinforced composites (GPLRC) nanoshells under axial compressive load is examined. To accomplish this end, the newly proposed theory of elasticity namely as nonlocal strain gradient elasticity theory is implemented into a refined hyperbolic shear deformation shell theory to establish a more accurate size-dependent shell model. The graphene platelets (GPLs) are supposed to be randomly oriented with uniform and three different functionally graded dispersions relevant to each layer as the weight fraction of GPL varies layerwise through the shell thickness direction. In accordance with the Halpin-Tsai micromechanical scheme, the effective material properties are achieved corresponding to uniform (U-GPLRC) and X-GPLRC, O-GPLRC, A-GPLRC functionally graded patterns of dispersion. The boundary layer theory of shell buckling and a two-stepped perturbation solving process are employed jointly to capture explicit analytical expressions for non local strain gradient stability curves of axially loaded functionally graded GPLRC nanoshells. Among different patterns of GPL distribution, it is observed that for both nonlocality and strain gradient size dependencies, the maximum and minimum size effects on the critical buckling loads are corresponding to X-GPLRC and O-GPLRC nanoshells, respectively. (C) 2017 Elsevier Ltd. All rights reserved.
机译:借助于更全面的尺寸依赖性连续素弹性理论,检查了在轴向压缩载荷下的功能渐变多层石墨烯血小板增强复合材料(GPLRC)纳米型的非线性不稳定性。为了实现这一端,新的弹性理论即作为非本体应变梯度弹性理论被实施为精制的双曲剪切变形壳理论,以建立更准确的尺寸依赖性壳牌模型。将石墨烯血小板(GPLS)被动以均匀为定向,并且与每个层相关的三种不同的功能渐变分散体,因为GPL的重量分数通过壳体厚度方向层而变化。根据Halpin-TSAI微机械方案,实现了对应于均匀(U-GPLRC)和X-GPLRC,O-GPLRC,A-GPLRC功能分散的分散模式的有效材料性能。共同采用壳屈曲的边界层理论和两步扰动求解过程,以捕获用于轴向装载的功能梯度GPLRC纳米圆盘的非局部应变梯度稳定性曲线的显式分析表达式。在GPL分布的不同模式中,观察到,对于非局部和应变梯度尺寸的依赖性,对关键屈曲负载的最大和最小尺寸效应分别对应于X-GPLRC和O-GPLRC纳米型。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号