...
首页> 外文期刊>International Journal of Mechanical Sciences >A new approach to finite element modelling of cyclic thermomechanical stress-strain responses
【24h】

A new approach to finite element modelling of cyclic thermomechanical stress-strain responses

机译:一种新的循环热机械应力应变响应有限元建模方法

获取原文
获取原文并翻译 | 示例

摘要

Modem finite element based structural analyses of thermomechanically loaded structures require accurate simulations with low computational times. However, increasing the complexity of material models capable of modelling cyclic phenomena of engineering materials usually also increases the computational time. Here we present the implementation of the Prandtl operator approach into a finite element solver as a new material model for the study of the stress-strain response of solids subjected to thermomechanical loading. The main advantage of this model is its high computational speed, due mainly to the implicit consideration of the Masing and memory rules by variable temperatures, either during a single load cycle or during a complex thermomechanical load history. The model enables temperature-dependent elastoplastic stress-strain modelling using the von Mises yield function, associated flow rule and multilinear kinematic hardening. The commonly used elastic predictor-plastic corrector procedure now contains an improvement in the calculation of the equivalent plastic strain increment. This includes modelling of the true stress by the time-efficient temperature-dependent spring-slider model. The second advantage of the approach is a reduced number of material parameters per temperature required by the Ramberg-Osgood-type description of the cyclic curve. These material parameters can be obtained from either uniaxial strain controlled low cycle fatigue tests or uniaxial incremental step tests. The model has been validated on several load cases of both a thermomechanically loaded single finite element under tension-compression and shear loads, and a cantilever beam subjected to bending loads. Comparisons with reference material models show almost identical behaviour of the new and the Besseling model, but with the advantage of having up to 35 percent shorter computation times.
机译:Modem基于有限元的热机械加载结构的结构分析需要具有低计算时间的精确模拟。然而,增加能够建模工程材料的循环现象的材料模型的复杂性通常也增加了计算时间。在这里,我们将PRANDTL操作员方法的实施方式作为有限元求解器作为一种新的材料模型,用于研究经受热机械负荷的固体的应力 - 应变响应。该模型的主要优点是其高计算速度,主要是由于在单个负载周期或复杂的热机械负载历史期间,通过可变温度自由考虑映射和内存规则。该模型通过von MIS屈服函数,相关的流量规则和多线性运动硬化,能够实现温度依赖性的弹性塑性应力模拟。常用的弹性预测测量仪校正器程序现在含有等效塑性应变增量的计算的改进。这包括通过时间高效的温度相关的春天滑块模型建模真正的压力。该方法的第二个优点是循环曲线的ramberg-Osgood型描述所需的每温的材料参数减少。这些材料参数可以从单轴应变控制的低循环疲劳试验或单轴增量步骤测试获得。该模型已经在张力 - 压缩和剪切载荷下进行热机械加载的单个有限元件的几个负载情况,并且经过弯曲载荷的悬臂梁。与参考材料模型的比较显示了新的和贝塞尔模型的几乎相同的行为,而且具有高达35%的计算时间的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号