...
首页> 外文期刊>International Journal of Mechanical Sciences >A new and efficient thermo-elasto-viscoplastic numerical implementation for implicit finite element simulations of powder metals: An application to hot isostatic pressing
【24h】

A new and efficient thermo-elasto-viscoplastic numerical implementation for implicit finite element simulations of powder metals: An application to hot isostatic pressing

机译:用于粉末金属的隐性有限元模拟的新型有效的热弹性粘塑性数值:热位静压的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Hot isostatic pressing (HIP) combines high temperatures and pressures to consolidate powder metals (PM) to form exotic parts that cannot be obtained from traditional manufacturing processes. Manufacturers need to utilize mathematical tools, such as the finite element (FE) method, to simulate the HIP process to avoid the trial and error method in product and process development. FE simulations of the HIP process require constitutive models that simultaneously capture the various deformation mechanisms, such as plasticity and creep, during powder densification. Since the HIP process can occur over several hours, these numerical implementations need to be both accurate and efficient for manufacturers to exploit the HIP process fully. This paper presents a new and efficient numerical scheme that accelerates FE calculations of PM that undergoes the HIP process. This work couples the constitutive models presented in Van Nguyen et al. (2017) for thermal, creep, plasticity, and density changes into a seamless integration scheme. The proposed numerical scheme is implemented a user-defined material subroutine (UMAT) for mechanical calculations in an implicit formulation of the commercial finite element software LS-DYNA. A thermal user-defined material subroutine (ThuMAT) is also implemented to account for the porosity effect on thermal properties in thermal calculations. FE simulations of a stainless steel 304/316 L capsule that undergo the HIP process are performed to highlight the efficiency of the proposed model. The predicted deformed shape of the capsule using the proposed integration scheme showed excellent agreement with previous implementations. Furthermore, the proposed integration scheme can provide a computational speedup of up to 1,100% without a loss of accuracy compared to previous implementations.
机译:热等静压(臀部)结合了高温和压力来巩固粉末金属(PM)形成不能从传统制造过程中获得的异国情调的部件。制造商需要利用数学工具,例如有限元(FE)方法,模拟髋关节过程,以避免产品和过程开发中的试验和误差方法。髋关节过程的FE模拟需要组成型模型,其在粉末致密化期间同时捕获各种变形机制,例如可塑性和蠕变。由于髋关节过程可能发生在几个小时内,因此这些数值实现对于制造商来说需要完全利用HIP过程。本文提出了一种新的有效的数字方案,可加速PM的FE计算,经历髋关节过程。这项工作耦合了Van Nguyen等人的本构模型。 (2017)用于热,蠕变,可塑性和密度变化为无缝集成方案。所提出的数值方案是实现了用户定义的材料子程序(UMAT),用于在商业有限元软件LS-DYNA的隐式制定中的机械计算。还实施了热用户定义的材料子程序(Thumat)以考虑热量计算中热性质的孔隙效应。进行不锈钢的FE模拟304/316 L胶囊,经历髋关节过程以突出所提出的模型的效率。使用所提出的集成方案预测胶囊的变形形状显示出与先前实现的良好协议。此外,与先前的实施相比,所提出的集成方案可以提供高达1,100%的计算加速,而不会损失精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号