...
首页> 外文期刊>International Journal of Multiphase Flow >Dynamics of droplet in flow-focusing microchannel under AC electric fields
【24h】

Dynamics of droplet in flow-focusing microchannel under AC electric fields

机译:交流电场下流动聚焦微通道中液滴动态

获取原文
获取原文并翻译 | 示例

摘要

Electric field has been proven to be an effective active technique in microfluidic devices for precise manipulating of the microdroplet. In this article, we investigate the Water in Oil droplet formation in a flow-focusing microchannel under AC electric field experimentally and numerically. A three-dimensional numerical model is built combining the Volume of Fraction (VOF) method and the leaky dielectric model, which reveals the droplet formation mechanism under the effects of the electric field. Due to the Maxwell stress induced by the electric field, the sine waveform electric field induces the oscillation at the liquid interfaces, which stimulates the breakup of the disperse phase and thus tunes the droplet size. We analyse the phenomena by the electric capillary number Ca-E evaluated according to the numerical results. The increase of the electric voltage and the frequency both are able to lift Ca-E. With the increase of the electric voltage, the droplet generated becomes smaller and the droplet formation turns unstable when Ca-E > 1. The dominating effect of the pressure difference between the disperse phase and the continuous phase shifts from the initially hydrodynamic pressure to the latterly electric field induced one during the evolution of the electric voltage. With a relatively high electric frequency (f >= 5000 Hz, Ca-E > 1), the droplet formation regime transits from dripping to jetting under the constant hydrodynamic conditions. The numerical results show that the surge of the magnitude of the electric body force tends to stretch the disperse phase at liquid interfaces which leads to the transition. This study explored the dynamic mechanism of the droplet formation under AC electric field with different voltages and frequencies which contributes to the in-deep understanding of the coupling effect between the hydrodynamic pressure and the AC electric field induced Maxwell stress and hence, might lead to better control strategy on the promising technology. (C) 2020 Elsevier Ltd. All rights reserved.
机译:已被证明是电场是微流体装置中有效的活性技术,以精确地操纵微滴。在本文中,我们在通过实验和数值上在AC电场下的流动聚焦微通道中的油滴形成中的水滴形成。建立了三维数值模型,组合了馏分(VOF)方法和泄漏介电模型的体积,这揭示了电场影响下的液滴形成机制。由于电场引起的麦克风应力,正弦波形电场在液体界面处引起振荡,这刺激了分散相的分裂,从而调节液滴尺寸。我们通过根据数值结果评估的电毛细管数CA-E分析该现象。电压的增加和频率都能够提升CA-E。随着电压的增加,当CA-E> 1时,产生的液滴变小,并且液滴形成不稳定。分散相位与连续相位之间的压力差的主导效果从最初的流体动力学压力转移到后部电场在电压的演变期间引起一个。具有相对高的电频率(F> = 5000Hz,Ca-e> 1),液滴形成调节器在恒定的流体动力学条件下从滴落到喷射。数值结果表明,电体力幅度的浪涌倾向于在液体界面处拉伸分散相,这导致过渡。本研究探讨了交流电场下液滴形成的动态机制,具有不同的电压和频率,这有助于对流体动力压力和交流电场诱导的麦克斯韦压力之间的耦合效应的深刻理解,可能导致更好有前途技术的控制策略。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号