...
首页> 外文期刊>International Journal of Multiphase Flow >Wavelet decomposition method decoupled boiling/evaporation oscillation mechanisms over two to three timescales: A study for a microchannel with pin fin structure
【24h】

Wavelet decomposition method decoupled boiling/evaporation oscillation mechanisms over two to three timescales: A study for a microchannel with pin fin structure

机译:小波分解方法分离沸腾/蒸发振荡机制,超过两到三个时间尺度:用销钉结构进行微通道的研究

获取原文
获取原文并翻译 | 示例
           

摘要

Boiling/evaporation heat transfer in a microchannel with pin fin structure was performed with water as the working fluid. Simultaneous measurements of various parameters were performed. The chip wall temperatures were measured by a high spatial-time resolution IR image system, having a sensitivity of 0.02 degrees C. The flow pattern variations synchronously changed wall temperatures due to ultra-small Bi number. The wavelet decomposition method successfully identified the noise signal and decoupled various temperature oscillations with different amplitudes and frequencies. Three types of temperature oscillations were identified according to heat flux q and mass flux G. The first type of oscillation occurred at q/G < 0.62 kJ/kg. The approximation coefficient of wavelet decomposition decided the dominant cycle period which was 3 times of the fluid residence time in the microchannel, behaving the density wave oscillation characteristic. The detail coefficients of wavelet decomposition decided the dominant cycle period, which matched the flow pattern transition determined value well, representing the flow pattern transition induced oscillation. For the second type of oscillation, the wavelet decomposition decoupled the three oscillation mechanisms. The pressure drop oscillation caused the temperature oscillation amplitudes of 5-10 degrees C and cycle periods of 10-15 s. The density wave oscillation and flow pattern transition induced oscillation are embedded with both the pressure rise and decrease stages of the pressure drop oscillation. The third type of oscillation happened at q/G > 1.13 kJ/kg, having the density wave oscillation coupled with the varied liquid film evaporation induced oscillation. The liquid island, retention bubble induced nucleation sites and cone-shape two-phase developing region are unique features of microchannel boiling with pin fin structure. This study illustrated that pressure drop oscillation and density wave oscillation, usually happened in large size channels, also take place in microchannels. The flow pattern transition and varied liquid film evaporation induced oscillations are specific to microchannel boiling/evaporation flow. (C) 2015 Elsevier Ltd. All rights reserved.
机译:用水作为工作流体进行带销翅片结构的微通道中的沸腾/蒸发热传递。进行各种参数的同时测量。通过高空间时间分辨率IR图像系统测量芯片壁温度,其灵敏度为0.02℃。流动图案变化由于超小的Bi号而同步改变了壁温度。小波分解方法成功地识别噪声信号并用不同的幅度和频率解耦各种温度振荡。根据热通量Q和质量磁通G鉴定了三种类型的温度振荡。第一种类型的振荡发生在Q / g <0.62 kJ / kg时。小波分解的近似系数决定了微通道中的流体停留时间3倍的主导循环周期,表现为密度波振荡特性。小波分解的细节系数决定了匹配流量模式转变确定的值良好的主导周期,表示流量模式转变感应振荡。对于第二种类型的振荡,小波分解解耦了三种振荡机制。压降振荡导致5-10℃的温度振荡幅度和10-15秒的循环周期。密度波振荡和流动模式过渡诱导振荡嵌入压力下降振荡的压力升高和降低阶段。第三种类型的振荡发生在Q / g> 1.13 kJ / kg,具有与变化的液膜蒸发诱导振荡耦合的密度波振荡。液体岛,保留泡沫诱导的成核位点和锥形两相显影区域是具有销翅片结构的微通道沸腾的独特特征。本研究说明了压力下降振荡和密度波浪振荡通常发生在大尺寸通道中,也发生在微通道中。流动模式转变和变化的液体膜蒸发诱导的振荡是微通道沸腾/蒸发流动的特异性。 (c)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
  • 作者单位

    North China Elect Power Univ Beijing Key Lab Multiphase Flow &

    Heat Transfer Beijing 102206 Peoples R China;

    North China Elect Power Univ Beijing Key Lab Multiphase Flow &

    Heat Transfer Beijing 102206 Peoples R China;

    North China Elect Power Univ Beijing Key Lab Multiphase Flow &

    Heat Transfer Beijing 102206 Peoples R China;

    North China Elect Power Univ Beijing Key Lab Multiphase Flow &

    Heat Transfer Beijing 102206 Peoples R China;

    North China Elect Power Univ Beijing Key Lab Multiphase Flow &

    Heat Transfer Beijing 102206 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 多相流;
  • 关键词

    Microchannel; Micro-pin-fin; Boiling/evaporation; Oscillation; Wavelet;

    机译:微通道;微针翅片;沸腾/蒸发;振荡;小波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号