...
首页> 外文期刊>International Journal of Multiphase Flow >A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow
【24h】

A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow

机译:环形两相流液膜速度测量的多相,微级PIV测量技术

获取原文
获取原文并翻译 | 示例
           

摘要

Prediction methods for two-phase annular flow require accurate knowledge of the velocity profile within the liquid film flowing at its perimeter as the gradients within this film influence to a large extent the overall transport processes within the entire channel. This film, however, is quite thin and variable and traditional velocimetry methods have met with only very limited success in providing velocity data. The present work describes the application of Particle Image Velocimetry (PIV) to the measurement of velocity fields in the annular liquid flow. Because the liquid is constrained to distances on the order of a millimeter or less, the technique employed here borrows strategies from micro-PIV, but micro-Ply studies do not typically encounter the challenges presented by annular flow, including very large velocity gradients, a free surface that varies in position from moment to moment, the presence of droplet impacts and the passage of waves that can be 10 times the average thickness of the base film. This technique combines the seeding and imaging typical to micro-PIV with a unique lighting and image processing approach to deal with the challenges of a continuously varying liquid film thickness and interface. Mean velocity data are presented for air water in two-phase co-current upward flow in a rectangular duct, which are the first detailed velocity profiles obtained within the liquid film of upward vertical annular flow to the authors' knowledge. The velocity data presented here do not distinguish between data from waves and data from the base film. The resulting velocity profiles are compared with the classical Law of the Wall turbulent boundary layer model and found to require a decreased turbulent diffusivity for the model to predict well. These results agree with hypotheses previously presented in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
机译:两相环形流动的预测方法需要准确地了解在其周边流动的液体膜内的速度曲线,作为该薄膜内的梯度在很大程度上影响整个通道内的整体运输过程。然而,这部电影非常薄,并且变量和传统的速度方法已经满足了在提供速度数据方面的非常有限的成功。本作者描述了粒子图像速度(PIV)在环形液体流动中的测量中的应用。因为液体受到毫米或更小的距离的约束,所以该技术在这里采用微PIV的借款策略,但微观的研究通常不会遇到环形流量呈现的挑战,包括非常大的速度梯度,包括非常大的速度梯度从时刻到时刻的位置变化的自由表面,液滴冲击的存在和可以是基膜平均厚度的10倍的波浪的影响。该技术将播种和成像与微PIV的典型与独特的照明和图像处理方法相结合,以处理连续变化的液体膜厚度和界面的挑战。在矩形管道中为两相的同系机向上流动提供平均速度数据,这是在向上垂直环形流动的液体膜上获得的第一详细速度分布到作者的知识。这里呈现的速度数据不会区分来自基膜的波和数据的数据。将产生的速度分布与壁湍流边界层模型的古典规律进行比较,发现需要降低模型的湍流扩散率来预测。这些结果同意以前在文献中呈现的假设。 (c)2014年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号