...
首页> 外文期刊>International Journal of Greenhouse Gas Control >Potential CO2 and brine leakage through wellbore pathways for geologic CO2 sequestration using the National Risk Assessment Partnership tools: Application to the Big Sky Regional Partnership
【24h】

Potential CO2 and brine leakage through wellbore pathways for geologic CO2 sequestration using the National Risk Assessment Partnership tools: Application to the Big Sky Regional Partnership

机译:通过国家风险评估伙伴关系工具的地质二氧化碳途径潜在的二氧化碳和盐水渗漏:适用于大天空区域伙伴关系

获取原文
获取原文并翻译 | 示例
           

摘要

Geologic CO2 sequestration (GCS) has received high-level attention from the global scientific community as a response to climate change due to higher concentrations of CO2 in the atmosphere. However, GCS in saline aquifers poses certain risks including CO2/brine leakage through wells or non-sealing faults into groundwater or to the earth's surface. Understanding crucial reservoir parameters and other geologic features affecting the likelihood of these leakage occurrences will aid the decision-making process regarding GCS operations. In this study, we develop a science-based methodology for quantifying risk profiles at geologic CO2 sequestration sites as part of US DOE's National Risk Assessment Partnership (NRAP). We apply NRAP tools to a field scale project in a fractured saline aquifer located at Kevin Dome, Montana, which is part of DOE's Big Sky Carbon Sequestration Partnership project. Risks associated with GCS injection and monitoring are difficult to quantify due to a dearth of data and uncertainties. One solution is running a large number of numerical simulations of the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to address leakage risks and uncertainties. However, a full-physics simulation is not computationally feasible because the model is too large and requires fine spatial and temporal discretization to accurately reproduce complex multiphase flow processes. We employ the NRAP Integrated Assessment Model (NRAPIAM), a hybrid system model developed by the US-DOE for use in performance and quantitative risk assessment of CO2 sequestration. The IAM model requires reduced order models (ROMs) developed from numerical reservoir simulations of a primary CO2 injection reservoir. The ROMs are linked with discrete components of the NRAP-IAM including shallow reservoirs/aquifers and the atmosphere through potential leakage pathways. A powerful stochastic framework allows NRAP-IAM to be used to explore complex interactions among a large number of uncertain variables and to help evaluate the likely performance of potential sequestration sites. Using the NRAP-IAM, we find that the potential amount of CO2 leakage is most sensitive to values of permeability, end-point CO2 relative permeability, hysteresis of CO2 relative permeability, capillary pressure, and permeability of confining rocks. In addition to demonstrating the application of the NRAP risk assessment tools, this work shows that GCS in the Kevin Dome has a higher probability of encountering injectivity limitations during injection of CO2 into the Middle Duperow formation than previous studies have calculated. Finally, we estimate very low risk of CO2 leakage to the atmosphere unless the quality of the legacy well completions is extremely poor.
机译:地质二氧化碳封存(GCS)从全球科学界获得了高级别的关注,因为在大气中的浓度高浓度的二氧化碳,这是对气候变化的反应。然而,盐水含水层中的GCS构成了通过井或非密封故障进入地下水或地球表面的某些风险。了解影响关键的储层参数和影响这些泄漏事件可能性的地质特征将有助于决策过程关于GCS操作。在这项研究中,我们开发了一种基于科学的方法,用于量化地质二氧化碳封存位点的风险型材,作为美国DoE的国家风险评估伙伴关系(NRAP)的一部分。我们将NRAP工具应用于位于蒙大拿凯文圆顶,蒙大拿凯文圆顶的碎猪含水层中的现场比例项目,这是DOE大天空碳封存伙伴关系项目的一部分。由于数据和不确定性的缺乏,难以量化与GCS注射和监测相关的风险。一种解决方案正在运行大量二氧化碳注射液,浅储层/含水层,故障以及井的大量数值模拟,以解决泄漏风险和不确定性。然而,全物理模拟不是计算可行的,因为模型太大并且需要精确地再现复杂的多相流程过程的精确空间和时间离散化。我们采用NRAP综合评估模型(NRAPIAM),由US-DOE开发的混合系统模型,用于性能和定量风险评估CO2封存。 IAM模型需要从初级CO2注射藏的数值储层模拟开发的减少订单模型(ROM)。 ROM与NRAP-IAM的离散组件相关联,包括浅层储存器/含水层和大气通过潜在的泄漏途径。强大的随机框架允许NRAP-IAM用于探索大量不确定变量之间的复杂相互作用,并帮助评估潜在封存站点的可能性能。使用NRAP-IAM,我们发现二氧化碳泄漏的潜在量对渗透率最敏感,终点CO2相对渗透性,CO 2相对渗透性,毛细管压力和限制岩石的渗透性。除了展示NRAP风险评估工具的应用外,该工作表明,Kevin圆顶的GCS在注射CO2进入中间Duperow形成期间遇到的概率高于先前的研究。最后,除非遗留良好完井的质量极差,否则我们估计了对大气中的二氧化碳泄漏的风险非常低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号