AbstractA thermal–mechanical coupled phase field fracture model is developed to study the complex dyna'/> Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling
首页> 外文期刊>International Journal of Fracture >Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling
【24h】

Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling

机译:通过相位田间建模研究热冲击载荷下脆性材料的动态裂纹路径

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractA thermal–mechanical coupled phase field fracture model is developed to study the complex dynamic crack propagation path in brittle material under thermal shock loading. By introducing a global continuum phase-field variable to describe the diffusive crack, the coupling between heat transfer, deformation and fracture is conveniently realized. A novel elastic energy density function is proposed to drive the evolution of phase-field variable in a more realistic way. The three-field coupling equations are efficiently solved by adopting a staggered time integration scheme. The coupled phase field fracture model is verified by comparing with three classical examples and is then applied to study the fracture of disk specimens under central thermal shock. The simulations reproduce the three different types of crack paths observed in experiments. It is found that the crack grows through the heating area straightly at lower heating body flux, while branches into two at higher heating body flux loading. The crack branching prefers to occur in the heating area with larger heating radius and prefers to occur outside the heating area with smaller heating radius. Interestingly, the crack branches when propagation speed is at its lowest point, and it always occurs close to the compression region. It is shown that the heterogeneous stress field induced by temperature inhomogeneity may have a strong influence on the crack branching under the thermal shock loading.]]>
机译:<![CDATA [<摘要ID =“ABS1”语言=“EN”OutputMedium =“全部”> <标题>抽象 开发了热机械耦合相位裂缝模型在热冲击载荷下研究脆性材料中的复杂动态裂纹传播路径。通过引入全球连续阶段场变量来描述扩散裂缝,可以方便地实现传热,变形和裂缝之间的耦合。提出了一种新颖的弹性能量密度函数以更现实的方式驱动相场变量的演变。通过采用交错时间集成方案有效地解决了三场耦合方程。通过与三种经典实例进行比较来验证偶联的相场裂缝模型,然后应用于中央热冲击下的盘样品的断裂。模拟再现在实验中观察到的三种不同类型的裂纹路径。发现裂缝在较低的加热体通量下直接通过加热区域,而在更高的加热体通量负载下分支成两个。裂缝支化更喜欢在具有较大加热半径的加热区域中发生,并且喜欢在加热区域外发生,具有较小的加热半径。有趣的是,当传播速度处于最低点时,裂缝分支,并且始终发生在压缩区域附近。结果表明,温度不均匀性诱导的异质应力场可能对热冲击载荷下的裂缝分支产生强烈影响。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号