首页> 外文期刊>International Journal of Fracture >Multiscale crystal-plasticity phase field and extended finite element methods for fatigue crack initiation and propagation modeling
【24h】

Multiscale crystal-plasticity phase field and extended finite element methods for fatigue crack initiation and propagation modeling

机译:多尺度晶体塑性相域和疲劳裂纹启动和传播建模的扩展有限元方法

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a physics-based prediction of crack initiation at the microstructure level using the phase field (PF) model without finite element discretization, coupled with an efficient and accurate modeling of crack propagation at macro-scale based on extended finite element method (XFEM). Although the macro-scale model assumes linear elastic material behavior, at micro-scale the behavior of plastically deforming heterogeneous polycrystals is taken into account by coupling the PF model and a crystal plasticity model in the fast Fourier transform computational framework. A sequential coupling has been established for the multiscale modeling where the macro-scale finite element (FE) model determines the hot spots at each cyclic loading increment and passes the associated stress/strain values to the unit-cell phase-field model for accurate physics-based microstructure characterization and prediction of plasticity induced crack initiation. The PF model predicts the number of cycles for the crack initiation and the phenomenological crack growth models are employed to propagate the initiated crack by the appropriate length to be inserted in the FE mesh. Finally, the XFEM solution module is activated to perform mesh independent crack propagation from its initial crack size to the final size for the total life prediction. The effectiveness of the proposed multiscale method is demonstrated through numerical examples.
机译:本文介绍了使用相位场(PF)模型在无限元分离子化的微观结构水平下基于物理的预测,而不是有限元离散化,基于扩展有限元方法(XFEM)(XFEM) )。虽然宏观尺度模型假定线性弹性材料行为,但在微量尺度下,通过在快速傅里叶变换计算框架中耦合PF模型和晶体塑性模型来考虑塑性变形的异质多晶的行为。已经为多尺度建模建立了顺序耦合,其中宏观有限元(FE)模型在每个循环加载增量处确定热点,并将相关的应力/应变值传递给单位 - 小区相位模型以获得准确的物理学基于微观结构表征和可塑性裂纹引发的预测。 PF模型预测裂纹引发的循环次数,并且使用现象学裂纹生长模型将引发的裂缝通过适当的长度传播在Fe网状物中。最后,激活XFEM解决方案模块,以将网格独立裂纹传播从其初始裂缝大小进行到总寿命预测的最终尺寸。通过数值例子证明了所提出的多尺度方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号